Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 71(12): 3099-3106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35624180

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT) selectively kills tumor cells to which the photo-absorber dye IR700DX-conjugated antibodies are bound and induces a systemic anti-tumor immune response. NIR-PIT induces immunogenic cell death (ICD), releases damage-associated molecular patterns (DAMPs) molecules from dying tumor cells, and activates dendritic cells (DCs). However, it is unclear whether NIR-PIT affects migration of tumor-infiltrating (Ti)-DCs to draining lymph nodes (dLNs), where a systemic anti-tumor response is induced. Here, we utilized in vivo photolabeling of Ti-DCs in tumors in photoconvertible protein Kikume Green-Red (KikGR) mice to show that NIR-PIT enhanced migration of Ti-DCs including cDC1s, cDC2s, and CD326+ DCs to dLNs. This effect was abolished by blocking adenosine triphosphate (ATP), one of the DAMPs molecules, as well as by inhibition of Gαi signaling by pertussis toxin. Thus, ICD induction by NIR-PIT stimulates Ti-DC migration to dLNs via ATP-P2X7 receptor and Gαi protein-coupled receptor signaling pathways and may augment tumor antigen presentation to induce anti-tumor T cells in dLNs.


Assuntos
Imunoterapia , Receptores Purinérgicos P2X7 , Camundongos , Animais , Toxina Pertussis , Linhagem Celular Tumoral , Camundongos Nus , Morte Celular Imunogênica , Células Dendríticas , Trifosfato de Adenosina , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Rep ; 36(10): 109655, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496253

RESUMO

The evolutionary strategy of transferring maternal antibodies via milk profoundly impacts the survival, lifelong health, and wellbeing of all neonates, including a pronounced impact on human breastfeeding success and infant development. While there has been increased recognition that interorgan connectivity influences the quality of a mother's milk, potentially to personalize it for her offspring, the underlying bases for these processes are incompletely resolved. Here, we define an essential role of Peyer's patches (PPs) for the generation of plasma cells that secrete maternal immunoglobulin A (IgA) into milk. Our metagenomic analysis reveals that the presence of certain residential microorganisms in the gastrointestinal (GI) tract, such as Bacteroides acidifaciens and Prevotella buccalis, is indispensable for the programming of maternal IgA synthesis prior to lactational transfer. Our data provide important insights into how the microbiome of the maternal GI environment, specifically through PPs, can be communicated to the next generation via milk.


Assuntos
Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Leite Humano/imunologia , Plasmócitos/citologia , Animais , Humanos , Imunoglobulina A/imunologia , Imunoglobulina A Secretora/imunologia , Camundongos , Nódulos Linfáticos Agregados/imunologia
3.
J Immunol ; 207(3): 771-776, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290103

RESUMO

Tumor-infiltrating regulatory T cells (Tregs) have been extensively studied as therapeutic targets. However, not all infiltrating T cells exert their functions equally, presumably because of their heterogeneity and substantial turnover in tissues. In this study, we hypothesized that intertissue migration underlies the functional heterogeneity of Tregs. To test this, we applied in vivo photolabeling to examine single-cell diversity of immunosuppressive molecules in mouse Tregs migrating to, remaining in, and emigrating from MC38 tumors. Neuropilin-1 (Nrp1) expression was inversely correlated with that of six other molecules associated with Treg function. Unsupervised clustering analyses revealed that clusters containing Tregs that were retained in tumors expressed high levels of the six functional molecules but not of Nrp1. However, these clusters represented only half of the Tregs migrating to the tumor, suggesting evolving heterogeneity of tumor-infiltrating Tregs. Thus, we propose progressive pathways of Treg activation and migration between tumors and draining lymph nodes.


Assuntos
Adenocarcinoma/imunologia , Neoplasias do Colo/imunologia , Fatores de Transcrição Forkhead/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fenótipo
4.
iScience ; 24(5): 102424, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997702

RESUMO

Immunogenic tumor cell death enhances anti-tumor immunity. However, the mechanisms underlying this effect are incompletely understood. We established a system to induce tumor cell death in situ and investigated its effect on dendritic cell (DC) migration and T cell responses using intravital photolabeling in mice expressing KikGR photoconvertible protein. We demonstrate that tumor cell death induces phagocytosis of tumor cells by tumor-infiltrating (Ti)-DCs, and HMGB1-TLR4 and ATP-P2X7 receptor signaling-dependent Ti-DC emigration to draining lymph nodes (dLNs). This led to an increase in anti-tumor CD8+ T cells of memory precursor effector phenotype and secondary tumor growth inhibition in a CD103+ DC-dependent manner. However, combining tumor cell death induction with lipopolysaccharide treatment stimulated Ti-DC maturation and emigration to dLNs but did not improve tumor immunity. Thus, immunogenic tumor cell death enhances tumor immunity by increasing Ti-DC migration to dLNs where they promote anti-tumor T cell responses and tumor growth inhibition.

5.
J Neurosci Methods ; 355: 109127, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722643

RESUMO

Cell migration and cell proliferation are the basic principles that make up a living organism, and both biologically and medically. In order to understand living organism and biological phenomena, it is essential to track the migration, proliferation, and fate of cells in living cells and animals and to clarify the properties and molecular expression of cells. Recent developments in novel fluorescent proteins have made it possible to observe cell migration and proliferation as the cell cycle at the single-cell level in living individuals and tissues. Here, we introduce cell cycle visualization of living cells and animals by Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator) system and in situ cell labeling of cells and tracking cell migration by photoactivatable and photoconvertible proteins. In addition, we will present our established methods as an example of combines above tools with single-cell molecular expression analysis to reveal the fate of migrating cells at single cell level.


Assuntos
Proteínas Luminescentes , Animais , Ciclo Celular , Movimento Celular , Proliferação de Células , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética
6.
Front Immunol ; 11: 557720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013926

RESUMO

Dendritic cells (DCs) are essential for successful embryo implantation. However, the properties of uterine DCs (uDCs) during the implantation period are not well characterized. In this study, we investigated the dynamic changes in the uDC phenotypes during the period between coitus and implantation. In virgin mice, we evaluated the expressions of CD103 and XCR1, this is the first report to demonstrate uDCs expressing CD103 in XCR1+cDC1s and XCR1+cDC2s. On day 0.5 post coitus (pc), the number of uterine CD11c+CD103-MHC classIIhighCD86high-mature DCs rapidly increased and then decreased to non-pregnancy levels on days 1.5 and 2.5 pc. On day 3.5 pc just before implantation, the number of CD11c+CD103+MHC class IIdimCD86dim-immature DCs increased in the uterus. The increase in mature uDCs on day 1.5 pc was observed in both allogeneic- and syngeneic mating, suggesting that sexual intercourse, or semen, play a role in this process. Meanwhile, the increase in immature uDCs on day 3.5 pc was only observed in allogeneic mating, suggesting that allo-antigens in the semen contribute to this process. Next, to understand the turnover and migration of uDCs, we monitored DC movement in the uterus and uterine draining lymph nodes (dLNs) using photoconvertible protein Kikume Green Red (KikGR) mice. On day 0.5 pc, uDCs were composed of equal numbers of remaining DCs and migratory DCs. However, on day 3.5 pc, uDCs were primarily composed of migratory DCs, suggesting that most of the uDCs migrate from the periphery just before implantation. Finally, we studied the expression of PD-L2-which induces immunoregulation-on DCs. On day 3.5 pc, PD-L2 was expressed on CD103+-mature and CD103--mature DCs in the uterus. However, PD-L2 expression on CD103--immature DCs and CD103+-immature DCs was very low. Furthermore, both remaining and migratory DCs in the uterus and uterus-derived-DCs in the dLNs on day 3.5 pc highly expressed PD-L2 on their surface. Therefore, our study findings provide a better understanding of the dynamic changes occurring in uterine DCs and dLNs in preparation for implantation following allogeneic- and syngeneic mating.


Assuntos
Coito/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Fenótipo , Útero/fisiologia , Animais , Biomarcadores , Diferenciação Celular/imunologia , Plasticidade Celular/imunologia , Implantação do Embrião/genética , Implantação do Embrião/imunologia , Feminino , Imunofenotipagem , Camundongos
7.
J Reprod Immunol ; 140: 103137, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32402923

RESUMO

Immune cells are present in the breast milk of several mammalian species; however, their immunological function and transmigration mechanisms to milk remain unknown. Some researchers hypothesize that milk leukocytes have a mammary gland (MG) origin and transmigrate thorough the paracellular pathway, but mammary alveolar epithelial cells strictly regulate the paracellular movement of milk components during lactation via barrier structures, such as tight junctions (TJs). To investigate this discrepancy, we compared leukocyte populations in mouse MG and milk and explored TJ protein expression profiles in MG leukocytes. The main subsets of milk leukocytes were CD8+ and CD4+ T cells displaying the memory phenotype. The proportions of myeloid, B, and dendritic cells were significantly lower in milk than in the MG. CD8+ T cells expressed genes encoding the TJ proteins claudin-3, -7, -12, and ZO-1 at higher levels when compared with myeloid and B cells in the MG among lactating mice. Alveolar epithelial cells in the MG expressed claudin-3, -4, and -7. Administration of FTY720, an inhibitory agonist of sphingosine 1-phosphate receptor 1 that stabilizes TJ permeability, increased the myeloid cell proportion in milk. Different leukocyte populations in the MG and milk suggest active and selective mechanisms of cell transmigration to milk. Both TJ-forming components in alveolar epithelial cells from the MG and TJ protein expression profiles in leukocytes from the MG appear to regulate milk leukocyte populations. T cells are the main population in mouse breast milk and express similar profiles of TJ proteins as those in mammary alveolar epithelial cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/citologia , Linfócitos T/imunologia , Proteínas de Junções Íntimas/metabolismo , Animais , Feminino , Cloridrato de Fingolimode/administração & dosagem , Fatores de Transcrição Forkhead/genética , Humanos , Lactação , Camundongos , Camundongos Knockout , Leite , Gravidez , Proteínas de Junções Íntimas/genética
8.
J Pharmacol Sci ; 143(2): 122-126, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32199747

RESUMO

Tumor blood vessels have leaky and low blood flow properties, which lead to hypoxia and low nutrient levels in the tumor tissue area known as the tumor microenvironment (TME). We reported that the prolyl-hydroxylase (PHD) inhibitor Roxadustat normalized tumor blood vessels, improved tumor tissue perfusion, and re-oxygenated the tumor tissue. Recently, several PHD inhibitors including Roxadustat, Daprodustat, Molidustat, and Vadadustat, were evaluated in clinical trials and approved for treating renal anemia. In this study, we showed that PHD inhibitors reconstituted tumor blood vessels and improved the TME, and some agents exhibited differential effects on tumors in a mouse model.


Assuntos
Carcinoma Pulmonar de Lewis/irrigação sanguínea , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Ácidos Picolínicos/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Glicina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
9.
Front Immunol ; 10: 1098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156643

RESUMO

Regulatory T cells (Tregs) migrate between lymphoid and peripheral tissues for maintaining immune homeostasis. Tissue-specific function and functional heterogeneity of Tregs have been suggested, however, correlation between them and inter-tissue movement remain unknown. We used a contact hypersensitivity model of mice expressing a photoconvertible protein for tracking migratory cells. After marking cells in skin, we purified Tregs exhibiting a different migration pattern [Tregs recruiting to or remaining in the skin and emigrating from the skin to draining lymph nodes (dLNs) within half a day] and examined single-cell gene and protein expression profiles. Correlation and unsupervised clustering analyses revealed that Tregs in both skin and dLNs comprised two subpopulations, one highly expressing Nrp1 with variable CD25, Granzyme B, and/or CTLA-4 expression and another with 3 subsets strongly expressing CD25, Granzyme B, or CTLA-4 together with CD39. Characteristic subsets of Tregs remaining in the skin displayed higher CD25 and CD39 expression and lower Granzyme B and CTLA-4 expression compared with Tregs migrating to the skin. In addition, CCR5 expression in Tregs in skin was positively and negatively correlated with CD39 and Nrp-1 expression, respectively. To assess the predictive value of these data for immunotherapy, we blocked CCR5 signaling and found modest downregulation of CD39 and modest upregulation of Nrp1 expression in skin Tregs. Our data reveal a high functional diversity of Tregs in skin that is strongly related to trafficking behavior, particularly skin retention. Modulation of tissue-specific trafficking and function is a promising clinical strategy against autoimmune, infectious, and neoplastic diseases. Significance Statement: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis. To reveal tissue-specific immunoinhibitory functions and inter-tissue movement correlation based on Treg functional heterogeneity, we examined single-cell gene and protein expression profiles of Tregs recruited to, remaining in, or emigrating from the contact hypersensitivity-induced inflamed skin. Tregs in skin were composed of several subpopulations; one with high Nrp1 expression and another with 3 subsets strongly expressing CD25, Granzyme B, or CTLA-4 together with CD39. Tregs remaining in skin displayed highCD25, CD39, and CCR5 expression, and CCR5 signaling blockade downregulated CD39. A high Treg functional diversity in skin is strongly related to trafficking behavior. Tissue-specific trafficking and functional modulation are a promising clinical strategy against autoimmune, infectious, and neoplastic diseases.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Inflamação/imunologia , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Biodiversidade , Antígenos CD2/metabolismo , Antígeno CD52/metabolismo , Antígeno CTLA-4/metabolismo , Movimento Celular , Células Cultivadas , Análise por Conglomerados , Dermatite de Contato , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Análise de Célula Única
10.
Cell Calcium ; 79: 11-19, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30772686

RESUMO

Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at -80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Melanotrofos/metabolismo , Sódio/metabolismo , Animais , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Rutênio Vermelho/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
11.
Cell Immunol ; 324: 33-41, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269102

RESUMO

Tetraspanin membrane protein, epithelial membrane protein 3 (Emp3), is expressed in lymphoid tissues. Herein, we have examined the Emp3 in antigen presenting cell (APC) function in the CD8+ cytotoxic T lymphocytes (CTLs) induction. Emp3-overexpressing RAW264.7 macrophage cell line derived from BALB/c mice reduced anti-C57BL/6 alloreactive CTL induction, while Emp3-knockdown RAW264.7 enhanced it compared with parent RAW267.4. Emp3-overexpressing RAW264.7 inhibited, but Emp3-knockdown RAW264.7 augmented, CD8+ T cell proliferation, interferon-γ secretion, IL-2 consumption, and IL-2Rα expression on CD8+ T cells. The supernatant from co-culture with Emp3-overexpressing RAW264.7 contained higher amount of TNF-α, and TNF- α neutralization significantly restored all these inhibitions and the alloreactive CTL induction. These results suggest that Emp3 in allogeneic APCs possesses the inhibitory function of alloreactive CTL induction by downregulation of IL-2Rα expression CD8+ T cells via an increase in TNF-α production. This demonstrates a novel mechanism for regulating CTL induction by Emp3 in APCs through TNF-α production.


Assuntos
Glicoproteínas de Membrana/imunologia , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Fator de Necrose Tumoral alfa/biossíntese
12.
Cell Calcium ; 57(1): 25-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25479918

RESUMO

Neurones in the supraoptic nucleus (SON) of the hypothalamus possess intrinsic osmosensing mechanisms, which are lost in transient receptor potential vanilloid 1 (Trpv1)-knock-out mice. The molecular nature of the osmosensory mechanism in SON neurones is believed to be associated with the N-terminal splice variant of Trpv1, although their entire molecular structures have not been hitherto identified. In this study, we sought for TRPV1-related molecules and their function in the rat SON. We performed RT-PCR and immunohistochemistry to detect TRPV1-related molecules in the SON, and patch-clamp and imaging of the cytosolic Ca(2+) concentration ([Ca(2+)]i) to measure responses to osmolality changes and TRPV-related drugs in acutely dissociated SON neurones of rats. RT-PCR analysis revealed full-length Trpv1 and a new N-terminal splice variant, Trpv1_SON (LC008303) in the SON. Positive immunostaining was observed using an antibody against the N-terminal portion of TRPV1 in arginine vasopressin (AVP)-immunoreactive neurones, but not in oxytocin (OT)-immunoreactive neurones. Approximately 20% of SON neurones responded to mannitol (50 mM) with increased action potential firing, inward currents, and [Ca(2+)]i mobilization. Mannitol-induced responses were observed in AVP neurones isolated from AVP-eGFP transgenic rats and identified by GFP fluorescence, but not in OT neurones isolated from OT-mRFP transgenic rats and identified by RFP fluorescence. The mannitol-induced [Ca(2+)]i responses were reversibly blocked by the non-selective TRPV antagonist, ruthenium red (10 µM) and the TRPV1 antagonists, capsazepine (10 µM) and BCTC (10 µM). Although the TRPV1 agonist, capsaicin (100 nM) evoked no response at room temperature, it triggered cationic currents and [Ca(2+)]i elevation when the temperature was increased to 36°C. These results suggest that AVP neurones in the rat SON possess functional full-length TRPV1. Moreover, differences between the responses to capsaicin or hyperosmolality obtained in rat SON neurones and those obtained from dorsal root ganglion neurones or TRPV1-expressing cells indicate that the osmoreceptor expressed in the SON may be a heteromultimer in which TRPV1 is co-assembled with some other, yet unidentified, molecules.


Assuntos
Neurônios/metabolismo , Núcleo Supraóptico/metabolismo , Canais de Cátion TRPV/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Células Cultivadas , Células HEK293 , Humanos , Masculino , Manitol/farmacologia , Neurônios/citologia , Concentração Osmolar , Ocitocina/farmacologia , Pirazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Transgênicos , Ratos Wistar , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Temperatura
13.
Brain Res ; 1591: 1-13, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25451091

RESUMO

While magnocellular neurons in the supraoptic nucleus (SON) possess rich Gi/o-mediated mechanisms, molecular and cellular properties of G-protein-activated inwardly rectifying K(+) (GIRK) channels have been controversial. Here, properties of GIRK channels are examined by RT-PCR and whole-cell patch-clamp techniques in rat SON neurons. Patch clamp experiments showed that the selective GABAB agonist, baclofen, enhanced currents in a high K(+) condition. The baclofen-enhanced currents exhibited evident inward rectification and were blocked by the selective GABAB antagonist, CGP55845A, the IRK channel blocker, Ba(2+), and the selective GIRK channel blocker, tertiapin, indicating that baclofen activates GIRK channels via GABAB receptors. The GIRK currents were abolished by N-ethylmaleimide pretreatment, and prolonged by GTPγS inclusion in the patch pipette, suggesting that Gi/o proteins are involved. RT-PCR analysis revealed mRNAs for all four GIRK 1-4 channels and for both GABABR1 and GABABR2 receptors in rat SON. However, the concentration-dependency of the baclofen-induced activation of GIRK currents had an EC50 of 110 µM, which is about 100 times higher than that of baclofen-induced inhibition of voltage-dependent Ca(2+) channels. Moreover, baclofen caused no significant changes in the membrane potential and the firing rate. These results suggest that although GIRK channels can be activated by GABAB receptors via the Gi/o pathway, this occurs at high agonist concentrations, and thus may not be a physiological mechanism regulating the function of SON neurons. This property that the membrane potential receives little influence from GIRK currents seems to be uncommon for CNS neurons possessing rich Gi/o-coupled receptors, and could be a special feature of rat SON neurons.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Neurônios/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de GABA-B/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Baclofeno/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos Wistar , Núcleo Supraóptico/efeitos dos fármacos
14.
Biomed Res ; 34(6): 329-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24389409

RESUMO

Adult rat dorsal root ganglion (DRG) neurons cultured in the presence of 100-ng/mL NGF were reported to show spontaneous action potentials in the cell-attached recording. In this study, underlying mechanisms were examined in the whole-cell and outside-out voltage clamp recording. In 75% neurons with on-cell firing, transient inward current spikes were repetitively recorded in the voltage clamp mode at -50 mV in the whole-cell configuration (named "Isp"). Isp with stable amplitudes occurred in an all-or-none fashion, and was abolished by TTX (< 100 nM), lidocaine (< 1 mM) and a reduction of extracellular Na(+) (154 to 100 mM) in an all-or-none fashion, suggesting that Isp reflects spontaneous dicharges occurring at the loosely voltage-clamped regions. Isp was also observed in the excised outside-out patches and the kinetics and the sensitivity to TTX and lidocaine resembled those in the whole-cell. Spontaneous action potentials were also recorded in the current clamp mode. Small subthreshold spikes often preceded the action potentials. When the localized discharge affected a whole-somatic membrane potential to overcome a threshold, the action potential generated. These results indicate that the triggering sources of the action potential exist in the somatic membrane itself in NGF-treated DRG neurons.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Potenciais de Ação , Animais , Cátions Monovalentes , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Lidocaína/farmacologia , Masculino , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Tetrodotoxina/farmacologia
15.
Brain Res ; 1483: 1-12, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22975133

RESUMO

Arginine-vasopressin (AVP) is a nonapeptide of hypothalamic origin that has been shown to exert many important cognitive and physiological functions in neurons and terminals of both the central and peripheral nervous system (CNS and PNS). Here we report for the first time that AVP induced an increase in intracellular Ca²âº concentration ([Ca²âº](i)) in non-neuronal cells isolated from the rat dorsal root ganglion (DRG) and cultured in vitro. The ratiometric [Ca²âº](i) measurements showed that AVP evoked [Ca²âº](i) responses in the non-neuronal cells and these concentration-dependent (100 pM to 1 µM) responses increased with days in vitro in culture, reaching a maximum amplitude after 4-5 day. Immunostaining by anti-S-100 antibody revealed that more than 70% of S-100 positive cells were AVP-responsive, indicating that glial cells responded to AVP and increased their [Ca²âº](i). The responses were inhibited by depletion of the intracellular Ca²âº stores or in the presence of inhibitors of phospholipase C, indicating a metabotropic response involving inositol trisphosphate, and were mediated by the V1 subclass of AVP receptors, as evidenced by the use of the specific blockers for V1 and OT receptors, (d(CH2)5¹,Tyr(Me)²,Arg8)-Vasopressin and (d(CH2)5¹,Tyr(Me)²,Thr4,Orn8,des-Gly-NH29)-Vasotocin, respectively. V(1a) but not V(1b) receptor mRNA was expressed sustainably through the culture period in cultured DRG cells. These results suggest that AVP modulates the activity of DRG glial cells via activation of V(1a) receptor.


Assuntos
Cálcio/metabolismo , Gânglios Espinais/citologia , Líquido Intracelular/metabolismo , Neuroglia/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasopressinas/farmacologia , Animais , Arginina Vasopressina/análogos & derivados , Arginina Vasopressina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Masculino , Cloreto de Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Proteínas S100/metabolismo , Fatores de Tempo
16.
Biomed Res ; 33(2): 111-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22572385

RESUMO

Gymnopilus junonius is a widely spread mushroom in Japan and well known as a hallucinogenic mushroom. Gymnopilin was purified from the fruiting body of G. junonius and was reported to act on the spinal cord and depolarize motoneurons. This is the only evidence that gymnopilin has a biological effect on animals and no mechanism of the action has been determined at all. In this study, we examined effects of gymnopilin on intracellular Ca(2+) concentrations ([Ca(2+)](i)) of cultured cells isolated from the dorsal root ganglion (DRG) of the rat. The cell culture consisted of neurons and non-neuronal cells. Gymnopilin increased [Ca(2+)](i) in both the types of cells. The gymnopilinevoked [Ca(2+)](i) rise in the non-neuronal cells was inhibited by cyclopiazonic acid and U-73122, inhibitors of Ca(2+)-ATPase of the intracellular Ca(2+) store and phospholipase C, respectively, but not by removal of extracellular Ca(2+). These results indicate that gymnopilin activated phospholipase C and mobilize Ca(2+) from the intracellular Ca(2+) store in non-neuronal cells from the DRG. This is the first report to show that gymnopilin directly acts on cells isolated from the mammalian nervous system.


Assuntos
Agaricales/química , Sinalização do Cálcio/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Gânglios Espinais/citologia , Meglutol/análogos & derivados , Neuroglia/efeitos dos fármacos , Terpenos/farmacologia , Animais , Células Cultivadas , Estrenos/farmacologia , Masculino , Meglutol/farmacologia , Neuroglia/metabolismo , Pirrolidinonas/farmacologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
17.
J Vet Med Sci ; 72(12): 1531-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20657161

RESUMO

Adult rat dorsal root ganglion (DRG) neurons cultured in the presence of 100 ng/ml NGF show spontaneous action potentials and fluctuations in their cytosolic Ca(2+) concentrations ([Ca(2+)](i)). In the present study, the Ca(2+) sources of the [Ca(2+)](i) fluctuations and the types of neurons whose excitability was affected by NGF were examined. In the subpopulation of NGF-treated neurons, obvious fluctuations of [Ca(2+)](i) were observed. The [Ca(2+)](i) fluctuations were inhibited by Ca(2+) removal or inhibitors of voltage-gated Ca(2+) channels. Regardless of the treatment with NGF, about half of the neurons responded to capsaicin and 10% of the neurons responded to icilin, and almost all icilin-responding neurons also responded to capsaicin. Fluctuations of [Ca(2+)](i) with large amplitudes were observed in 12 out of 131 NGF-treated neurons. Among these 12 neurons, 10 neurons responded to both capsaicin and icilin. The degree of the [Ca(2+)](i) fluctuations in the NGF-treated neurons responding to both capsaicin and icilin was significantly larger than in other neurons. These results suggest that neurons expressing both capsaicin- and icilin-sensitive TRP channels are susceptible to NGF and become hyperexcitable and that Ca(2+) influx through voltage-gated Ca(2+) channels is the major source contributing to the [Ca(2+)](i) fluctuations. Since such DRG neurons could play a physiological role as nociceptors, the NGF-induced spontaneous activity of DRG neurons may be the underlying mechanism of neuropathic pain.


Assuntos
Cálcio/metabolismo , Gânglios Espinais/citologia , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Pirimidinonas/farmacologia , Animais , Capsaicina/farmacologia , Células Cultivadas , Esquema de Medicação , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...