Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 3(12): 83, 2011 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-22206610

RESUMO

The zebrafish model is rapidly gaining prominence in the study of development, hematopoiesis, and disease. The zebrafish provides distinct advantages over other vertebrate models during early embryonic development by producing transparent, externally fertilized embryos. Embryonic zebrafish are easily visualized and manipulated through microinjection, chemical treatment, and mutagenesis. These procedures have contributed to large-scale chemical, suppressor, and genetic screens to identify hematopoietic gene mutations. Genomic conservation and local synteny between the human and zebrafish genomes make genome-scale and epigenetic analysis of these mutations (by microarray, chromatin immunoprecipitation sequencing, and RNA sequencing procedures) powerful methods for translational research and medical discovery. In addition, large-scale screening techniques have resulted in the identification of several small molecules capable of rescuing hematopoietic defects and inhibiting disease. Here, we discuss the contributions of the zebrafish model to the understanding of hematopoiesis, hematopoietic stem cell development, and disease-related discovery. We also highlight the recent discovery of small molecules with clinical promise, such as dimethyl prostaglandin E2, 3F8, and thiazole-carboxamide 10A.

2.
Dev Biol ; 345(2): 133-43, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20621080

RESUMO

Vertebrate hematopoiesis is characterized by two evolutionally conserved phases of development, i.e., primitive hematopoiesis, which is a transient phenomenon in the early embryo, and definitive hematopoiesis, which takes place in the later stages. Beni fuji (bef) was originally isolated as a medaka mutant that has an apparently reduced number of erythrocytes in its peripheral blood. Positional cloning revealed that the bef mutant has a nonsense mutation in the c-myb gene. Previous studies have shown that c-myb is essential for definitive hematopoiesis, and c-myb is now widely used as a marker gene for the onset of definitive hematopoiesis. To analyze the phenotypes of the bef mutant, we performed whole-mount in situ hybridization with gene markers of hematopoietic cells. The bef embryos showed decreased expression of alpha-globin and l-plastin, and a complete loss of mpo1 and rag1 expression, suggesting that the bef embryos had defects not only in erythrocytes but also in other myeloid cells, which indicates that their definitive hematopoiesis was aberrant. Interestingly, we observed a diminution in the number of primitive erythrocytes and a delay in the emergence of primitive macrophages in the bef embryos. These results suggest that c-myb also functions in the primitive hematopoiesis, potentially demonstrating a link between primitive and definitive hematopoiesis.


Assuntos
Proteínas de Peixes/genética , Hematopoese/genética , Mutação , Oryzias/genética , Proteínas Proto-Oncogênicas c-myb/genética , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética
3.
Genesis ; 45(2): 90-100, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17245775

RESUMO

In the past decades, the function of the Wnt canonical pathway during embryogenesis has been intensively investigated; however, little survey of neonatal and adult tissues has been made, and the role of this pathway remains largely unknown. To investigate its role in mature tissues, we generated two new reporter transgenic mouse lines, ins-TOPEGFP and ins-TOPGAL, that drive EGFP and beta-galactosidase expression under TCF/beta-catenin, respectively. To obtain the accurate expression pattern, we flanked these transgenes with the HS4 insulator to reduce chromosomal positional effects. Analysis of embryos showed that the reporter genes were activated in regions where canonical Wnt activity has been implicated. Furthermore, their expression patterns were consistent in both lines, indicating the accuracy of the reporter signal. In the neonatal brain, the reporter signal was detected in the mesencephalon and hippocampus. In the adult mice, the reporter signal was found in the mature pericenteral hepatocytes in the normal liver. Furthermore, during inflammation the number of T cells expressing the reporter gene increased in the adult spleen. Thus, in this research, we identified two organs, i.e., the liver and spleen, as novel organs in which the Wnt canonical signal is in motion in the adult. These transgenic lines will provide us broader opportunities to investigate the function of the Wnt canonical pathway in vivo.


Assuntos
Encéfalo/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fígado/metabolismo , Transdução de Sinais/fisiologia , Baço/metabolismo , Proteínas Wnt/metabolismo , Animais , Animais Recém-Nascidos , Células COS , Células Cultivadas , Chlorocebus aethiops , Genes Reporter , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA