Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1235, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062202

RESUMO

Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.


Assuntos
Queloide , Animais , Humanos , Camundongos , Citocinas , Proteínas Hedgehog/genética , Queloide/tratamento farmacológico , Queloide/genética , Queloide/metabolismo , Camundongos Nus , Qualidade de Vida , Proteína GLI1 em Dedos de Zinco/genética , Transdução de Sinais
2.
Microsyst Nanoeng ; 8: 97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089943

RESUMO

A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 µl s- 1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (µPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...