Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 773-781, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148506

RESUMO

We report the observation of superconductivity in (Pt0.2Ir0.8)3Zr5 with a chiral space group (P6122) at low temperatures. The bulk nature of the superconductivity at a transition temperature of 2.2 K was confirmed using specific heat measurements. We revealed that (Pt0.2Ir0.8)3Zr5 obeys the weak-coupling Bardeen-Cooper-Schrieffer model, and the dominant mechanism in the upper critical field is the orbital pair-breaking limit rather than the Pauli-Clogston limit. This indicates that the antisymmetric spin-orbit coupling caused by the chiral crystal structure does not significantly affect the superconductivity of (Pt0.2Ir0.8)3Zr5.

2.
Sci Rep ; 13(1): 22458, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105267

RESUMO

We report the first observation of bulk superconductivity of a η-carbide-type oxide Zr4Pd2O. The crystal structure and the superconducting properties were studied through synchrotron X-ray diffraction, magnetization, electrical resistivity, and specific heat measurement. The superconducting transition was observed at Tc = 2.73 K. Our measurement revealed that the η-carbide-type oxide superconductor Zr4Pd2O shows an enhanced upper critical field µ0Hc2(0) = 6.72 T, which violates the Pauli-Clogston limit µ0HP = 5.29 T. On the other hand, we found that the enhanced upper critical field is absent in a Rh analogue Zr4Rh2O. The large µ0Hc2(0) of Zr4Pd2O would be raised from strong spin-orbit coupling with Pd-4d electrons. The discovery of new superconducting properties for Zr4Pd2O would shed light on the further development of η-carbide-type oxide superconductors.

3.
Chem Asian J ; 18(21): e202300727, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37752095

RESUMO

A highly dispersed carbonate-intercalated Cu2+ -Al3+ layered double hydroxide (CuAl LDH) was created on an unreactive α-Al2 O3 surface (CuAl LDH@α-Al2 O3 ) via a simple coprecipitation method of Cu2+ and Al3+ under alkaline conditions in the presence of α-Al2 O3 . A highly reducible CuO nanoparticles was generated, accompanied by the formation of CuAl2 O4 on the surface of α-Al2 O3 (CuAlO@α-Al2 O3 ) after calcination at 1073 K in air, as confirmed by powder X-ray diffraction (XRD) and Cu K-edge X-ray absorption near edge structure (XANES). The structural changes during the progressive heating process were monitored by using in-situ temperature-programmed synchrotron XRD (tp-SXRD). The layered structure of CuAl LDH@α-Al2 O3 completely disappeared at 473 K, and CuO or CuAl2 O4 phases began to appear at 823 K or 1023 K, respectively. Our synthesised CuAlO@α-Al2 O3 catalyst was highly active for the acceptorless dehydrogenation of benzylic, aliphatic, or cyclic aliphatic alcohols; the TON based on the amount of Cu increased to 163 from 3.3 of unsupported CuAlO catalyst in 1-phenylethanol dehydrogenation. The results suggested that Cu0 was obtained from the reduction of CuO in the catalyst matrix during the reaction without separate reduction procedure and acted as a catalytically active species.

4.
Inorg Chem ; 61(30): 11746-11756, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861755

RESUMO

A novel perovskite fluoride, LixCoF3, which has an exceptionally low tolerance factor (0.81), has been synthesized via low-temperature lithium intercalation into a distorted ReO3-type fluoride CoF3 using organolithium reagents. Interestingly, this reaction is completed within 15 min at room temperature. Synchrotron X-ray diffractometry and optical second harmonic generation at room temperature have revealed that this compound shows a high-temperature LiNbO3-type structure (space group: R3̅c) involving Li-Co antisite defects and A-site splitting along the c direction. A-site splitting is consistent with the prediction based on hybrid Hartree-Fock density functional theory calculations. Co-L2,3 edge X-ray absorption spectroscopy, as well as bond valence sum analysis, has verified the divalent oxidation state of Co ions in the lithiated phase, suggesting that its composition is close to LiCoF3 (x ≈ 1). This compound exhibits a paramagnetic-to-antiferromagnetic transition at 36 K on cooling, accompanied by weak ferromagnetic ordering. The synthetic route based on low-temperature lithiation of metal fluorides host paves the way for obtaining a new LiNbO3-type fluoride family.

5.
Materials (Basel) ; 15(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407946

RESUMO

Recently, high-entropy alloys (HEAs) and HEA-type compounds have been extensively studied in the fields of material science and engineering. In this article, we report on the synthesis of a layered system MBi2Te4 where the M site possesses low-, middle-, and high-entropy states. The samples with M = Pb, Ag1/3Pb1/3Bi1/3, and Ag1/5In1/5Sn1/5Pb1/5Bi1/5 were newly synthesized and the crystal structure was examined by synchrotron X-ray diffraction and Rietveld refinement. We found that the M-Te2 distance was systematically compressed with decreasing lattice constants, where the configurational entropy of mixing at the M site is also systematically increased. The details of structural refinements and the electrical transport property are presented.

6.
Langmuir ; 37(35): 10469-10480, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34427085

RESUMO

States of water molecules confined in a nanospace designed by montmorillonite (negatively charged silicate layer) and charge compensating benzylammonium were investigated. Caffeine was used as a probe because of its compatibility for the fine structure of the interlayer water. Powder synchrotron radiation X-ray diffraction (SXRD) and adsorption isotherms of the water vapor revealed a metastable structure of bimolecular water layers (2WLs) in the interlayer space. Water molecules readily penetrated to expand the interlayer space to 0.56 nm. The interlayer space did not increase further even in the presence of excess water. According to the isosteric heat of water, the expansion was limited because of moderate hydration as forming 2WLs. Caffeine molecules replaced a part of the water molecules in the 2WLs to expand the interlayer space to 0.65 nm. Time-resolved SXRD with an accumulation time of 500 ms revealed that the interlayer expansion reached a steady state within a few minutes. The caffeine intercalation proceeded, involving a change in the molecular orientation that increased the contact area of the caffeine molecules. The interlayer expansion was limited in all the solvents examined (mixtures of water with methanol, ethanol, acetone, and tetrahydrofuran), while the packing density of the incorporated caffeine was maximized in the absence of an organic solvent. The water molecules confined in the interlayer space acted as an actuator to accommodate a large quantity of amphiphilic molecules by adapting the nanostructure, which was achieved by releasing the confined water molecules.


Assuntos
Síncrotrons , Água , Adsorção , Bentonita , Difração de Raios X
7.
Adv Sci (Weinh) ; 8(15): e2101413, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34138514

RESUMO

The main approach for exploring metastable materials is via trial-and-error synthesis, and there is limited understanding of how metastable materials are kinetically stabilized. In this study, a metastable phase superionic conductor, ß-Li3 YCl6 , is discovered through in situ X-ray diffraction after heating a mixture of LiCl and YCl3 powders. While Cl- arrangement is represented as a hexagonal close packed structure in both metastable ß-Li3 YCl6 synthesized below 600 K and stable α-Li3 YCl6 above 600 K, the arrangement of Li+ and Y3+ in ß-Li3 YCl6 determined by neutron diffraction brought about the cell with a 1/√3 a-axis and a similar c-axis of stable α-Li3 YCl6 . Higher Li+ ion conductivity and lower activation energy for Li+ transport are observed in comparison with α-Li3 YCl6 . The computationally calculated low migration barrier of Li+ supports the low activation energy for Li+ conduction, and the calculated high migration barrier of Y3+ kinetically stabilizes this metastable phase by impeding phase transformation to α-Li3 YCl6 . This work shows that the combination of in situ observation of solid-state reactions and computation of the migration energy can facilitate the comprehension of the solid-state reactions allowing kinetic stabilization of metastable materials, and can enable the discovery of new metastable materials in a short time.

8.
Adv Mater ; 33(24): e2100312, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33949743

RESUMO

Solid-state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing reaction conditions and precursors for ceramic synthesis can be a laborious, trial-and-error process, as heterogeneous mixtures of precursors often evolve through a complicated series of reaction intermediates. Here, ab initio thermodynamics is used to model which pair of precursors has the most reactive interface, enabling the understanding and anticipation of which non-equilibrium intermediates form in the early stages of a solid-state reaction. In situ X-ray diffraction and in situ electron microscopy are then used to observe how these initial intermediates influence phase evolution in the synthesis of the classic high-temperature superconductor YBa2 Cu3 O6+ x   (YBCO). The model developed herein rationalizes how the replacement of the traditional BaCO3 precursor with BaO2 redirects phase evolution through a low-temperature eutectic melt, facilitating the formation of YBCO in 30 min instead of 12+ h. Precursor selection plays an important role in tuning the thermodynamics of interfacial reactions and emerges as an important design parameter in planning kinetically favorable synthesis pathways to complex ceramic materials.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 186-192, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843725

RESUMO

Sr8[Al12O24](SO4)2 (SAS) and Ca8[Al12O24](SO4)2 (CAS) are members of the aluminate sodalite-type oxides with the general chemical formula M8[Al12O24](XO4)2 (M2+ is the guest cation and XO42- is the guest anion). To discuss the role of the guest cations (M2+ = Sr2+ and Ca2+) on the rotation of AlO4 in the oxygen tetrahedral framework in the I43m phase, the crystal structure parameters and the probability density function of the guest ions in SAS and CAS have been investigated via synchrotron radiation X-ray powder diffraction by considering Gram-Charlier expansions. The interatomic distances between the M2+ and O2- ions evaluated from the maximum positions in the probability density distribution are almost equal to the sum of the ideal ionic radii of the M2+ and O2- ions. This result suggests that the geometry of the AlO4 tetrahedral framework and the fluctuation of the guest ions are mainly caused by steric effects between the M2+ and O2- ions.

10.
Inorg Chem ; 60(10): 6964-6970, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33913700

RESUMO

ß-Li3PS4 is a solid electrolyte with high Li+ conductivity, applicable to sulfide-based all-solid-state batteries. While a ß-Li3PS4-synthesized by solid-state reaction forms only in a narrow 300-450 °C temperature range upon heating, ß-Li3PS4 is readily available by liquid-phase synthesis through low-temperature thermal decomposition of complexes composed of PS43- and various organic solvents. However, the conversion mechanism of ß-Li3PS4 from these complexes is not yet understood. Herein, we proposed the synthesis mechanism of ß-Li3PS4 from Li3PS4·acetonitrile (Li3PS4·ACN) and Li3PS4·1,2-dimethoxyethane (Li3PS4·DME), whose structural similarity with ß-Li3PS4 would reduce the nucleation barrier for the formation of ß-Li3PS4. Synchrotron X-ray diffraction clarified that both complexes possess similar layered structures consisting of alternating Li2PS4- and Li+-ACN/DME layers. ACN/DME was removed from these complexes upon heating, and rotation of the PS4 tetrahedra induced a uniaxial compression to form the ß-Li3PS4 framework.

11.
Inorg Chem ; 60(2): 507-514, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33395280

RESUMO

We report the successful synthesis, crystal structure, and electrical properties of Sr3Re2O9, which contains Re6+ with the 5d1 configuration. This compound is isostructural with Ba3Re2O9 and shows a first-order structural phase transition at ∼370 K. The low-temperature (LT) phase crystallizes in a hettotype structure of Ba3Re2O9, which is different from that of the LT phase of Sr3W2O9, suggesting that the electronic state of Re6+ plays an important role in determining the crystal structure of the LT phase. The structural transition is accompanied by a sharp change in the electrical resistivity. This is likely a metal-insulator transition, as suggested by the electronic band calculation and magnetic susceptibility. In the LT phase, the ReO6 octahedra are rotated in a pseudo-a0a0a+ manner in Glazer notation, which corresponds to C-type orbital ordering. Paramagnetic dipole moments were confirmed to exist in the LT phase by muon spin rotation and relaxation measurements. However, the dipole moments shrink greatly because of the strong spin-orbit coupling in the Re ions. Thus, the electronic state of the LT phase corresponds to a Mott insulating state with strong spin-orbit interactions at the Re sites.

12.
Sci Rep ; 10(1): 12880, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732897

RESUMO

Polycrystalline samples of Sr0.5RE0.5FBiS2 (RE: La, Ce, Pr, Nd, and Sm) were synthesized via the solid-state reaction and characterized using synchrotron X-ray diffraction. Although all the Sr0.5RE0.5FBiS2 samples exhibited superconductivity at transition temperatures (Tc) within the range of 2.1-2.7 K under ambient pressure, the estimated superconducting volume fraction was small, which indicates non-bulk nature of superconductivity in those samples under ambient pressure. A dramatic increase in shielding fraction, which indicates the emergence of the bulk superconductivity was achieved by applying external hydrostatic pressures. We found that two phases, low-P phases with Tc = 2.5-2.8 K and high-P phases with Tc = 10.0-10.8 K, were induced by the pressure effect for samples with RE = La, Ce, Pr, and Nd. Pressure-Tc phase diagrams indicated that the critical pressure for the emergence of the high-P phase tends to increase with decreasing ionic radius of the doped RE ions, which was explained by the correlation between external and chemical pressure effects. According to the high-pressure X-ray diffraction measurements of Sr0.5La0.5FBiS2, a structural phase transition from tetragonal to monoclinic also occurred at approximately 1.1 GPa. Bulk superconducting phases in Sr0.5RE0.5FBiS2 induced by the external hydrostatic pressure effect are expected to be useful for understanding the effects of both external and chemical pressures to the emergence of bulk superconductivity and pairing mechanisms in BiCh2-based superconductors.

13.
Materials (Basel) ; 13(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392874

RESUMO

We report the synthesis and thermoelectric transport properties of As-doped layered pnictogen oxyselenides NdO0.8F0.2Sb1-xAsxSe2 (x ≤ 0.6), which are predicted to show high-performance thermoelectric properties based on first-principles calculation. The crystal structure of these compounds belongs to the tetragonal P4/nmm space group (No. 129) at room temperature. The lattice parameter c decreases with increasing x, while a remains almost unchanged among the samples. Despite isovalent substitution of As for Sb, electrical resistivity significantly rises with increasing x. Very low thermal conductivity of less than 0.8 Wm-1K-1 is observed at temperatures between 300 and 673 K for all the examined samples. For As-doped samples, the thermal conductivity further decreases above 600 K. Temperature-dependent synchrotron X-ray diffraction indicates that an anomaly also occurs in the c-axis length at around 600 K, which may relate to the thermal transport properties.

14.
Front Chem ; 8: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117872

RESUMO

Ce1-x Pr x OBiS2 (0. 1 ≤ x ≤ 0.9) single crystals were grown using a CsCl flux method. Their structural and physical properties were examined by X-ray diffraction, X-ray absorption, transmission electron microscopy, and electrical resistivity. All of the Ce1-x Pr x OBiS2 single crystals with 0.1 ≤ x ≤ 0.9 exhibited tetragonal phase. With increasing Pr content, the a-axis and c-axis lattice parameters decreased and increased, respectively. Transmission electron microscope analysis of Ce0.1Pr0.9OBiS2 (x = 0.9) single crystal showed no stacking faults. Atomic-resolution energy dispersive X-ray spectrometry mapping revealed that Bi, Ce/Pr, O, and S occupied different crystallographic sites, while Ce and Pr randomly occupied the same sites. X-ray absorption spectra showed that an increase of the Pr ratio increased the ratio of Ce4+/Ce3+. All of the Ce1-x Pr x OBiS2 crystals showed superconducting transition, with a maximum transition temperature of ~4 K at x = 0.9.

15.
J Phys Chem Lett ; 11(8): 2902-2909, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32212731

RESUMO

Zero-dimensional (0D) hybrid metal halides have emerged as a new generation of luminescent phosphors owing to their high radiative recombination rates, which, akin to their three-dimensional cousins, commonly demonstrate thermal quenching of luminescence. Here, we report on the finding of antithermal quenching of luminescence in 0D hybrid metal halides. Using (C9NH20)2SnBr4 single crystals as an example system, we show that 0D metal halides can demonstrate antithermal quenching of luminescence. A combination of experimental characterizations and first-principles calculations suggests that antithermal quenching of luminescence is associated with trap states introduced by structural defects in (C9NH20)2SnBr4. Importantly, we find that antithermal quenching of luminescence is not only limited to (C9NH20)2SnBr4 but also exists in other 0D metal halides. Our work highlights the important role of defects in impacting photophysical properties of hybrid metal halides and may stimulate new efforts to explore metal halides exhibiting antithermal quenching of luminescence at higher temperatures.

16.
Inorg Chem ; 58(22): 15410-15416, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31692349

RESUMO

Structural phase transitions of calcium strontium sulfoaluminate series, (Ca1-xSrx)8[AlO2]12(SO4)2 ((CS)AS-x) with x = 0.80-1.00, are systematically investigated by powder X-ray diffraction, dielectric measurements, and pyroelectric measurements, to clarify a phase diagram of (CS)AS-x (x = 0.80-1.00). A pure strontium sulfoaluminate, (CS)AS-1.00, is found to undergo three phase transitions, which take place successively on cooling from a prototypical cubic phase with the symmetry of Im3̅m. Though the room-temperature phase of (CS)AS-1.00 was previously reported to be of polar Pcc2, the pyroelectric measurements clarified a nonpolar character of the crystal symmetry. The dielectric measurements suggest a possibility of an antiferroelectric ground state of (CS)AS-x in the Sr-rich compositions. As x decreases, the ground state changes to a short-range-ordered state, implying a unique phase transition from the antiferroelectric state to the antiferroelectric-relaxor state. The present study provides an intriguing playground for designing new ferro/antiferroelectric materials.

17.
Inorg Chem ; 58(16): 10928-10935, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31393726

RESUMO

Layered double hydroxides (LDHs) are promising compounds in a wide range of fields. However, exchange of CO32- anions with other anions is necessary, because the CO32- anions are strongly affixed in the LDH interlayer space. To elucidate the reason for the extremely high stability of CO32- anions intercalated in LDHs, we investigated in detail the chemical states of CO32- anions and hydrated water molecules in the LDH interlayer space by synchrotron radiation X-ray diffraction, solid-state NMR spectroscopy, and Raman spectroscopy. We found the rigidity of the network structure formed between the CO32- anions, hydrated water molecules, and the hydroxyl groups on the metal hydroxide layer surface to be a crucial factor underlying the stability of CO32- anions in the LDH interlayer space.

18.
Inorg Chem ; 58(18): 11997-12001, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31469548

RESUMO

A new superconducting double perovskite was successfully synthesized by a low-temperature hydrothermal reaction at 240 °C. The crystal structure refinement of this double perovskite was done by single-crystal X-ray diffraction, and it had a cubic unit cell of a = 8.5207(2) Å with space group Im3̅m (No. 229). This superconducting double-perovskite chemical composition was estimated by electron probe microanalysis and was similar to the refined data. The superconducting transition temperature of the double perovskite was ∼30 K; the electrical resistivity began to fall at ∼25 K, and zero resistivity occurred below 7 K. Moreover, temperature-dependent resistivity under various magnetic fields and isothermal magnetization measurements ensured the nature of a type II superconductor for the sample. Finally, the metallic nature of the material was investigated by a first-principles study.

19.
Chemistry ; 25(55): 12842-12848, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376189

RESUMO

Aurivillius phases have been routinely known as excellent ferroelectrics and have rarely been deemed as materials that luminesce in the near-infrared (NIR) region. Herein, it is shown that the Aurivillius phases can demonstrate broadband NIR luminescence that covers telecommunication and biological optical windows. Experimental characterization of the model system Bi2.14 Sr0.75 Ta2 O9-x , combined with theoretical calculations, help to establish that the NIR luminescence originates from defective [Bi2 O2 ]2+ layers. Importantly, the generality of this finding is validated based on observations of a rich bank of NIR luminescence characteristics in other Aurivillius phases. This work highlights that incorporating defects into infinitely repeating [Bi2 O2 ]2+ layers can be used as a powerful tool to space-selectively impart unusual luminescence emitters to Aurivillius-phase ferroelectrics, which not only offers an optical probe for the examination of defect states in ferroelectrics, but also provides possibilities for coupling of the ferroelectric property with NIR luminescence.

20.
Dalton Trans ; 48(32): 12272-12278, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31339138

RESUMO

An extremely large displacement of the indium site in In-S6 octahedra in LnOInS2 (Ln = La, Ce, and Pr) was found in synchrotron X-ray diffraction. LaOInS2 with off-center indium in In-S6 octahedra exhibited a wider optical band gap than CeOInS2 and PrOInS2 with on-center indium. Therefore, the electronic structure of LnOInS2 is governed by the indium site with an extremely large displacement. All LnOInS2 produced H2 gas under visible light irradiation in the presence of sacrificial electron donors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...