Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Fertil ; 4(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542598

RESUMO

Lay summary: Friction caused by blood flowing across cells that line blood vessels (endothelial cells) activates sensors of mechanical force. This produces nitric oxide (NO) which widens placental blood vessels, enabling more blood flow to the baby. This study sought to determine whether the mechanical sensor, Piezo1, is important for NO production in fetoplacental endothelial cells (FpECs) and whether the steps in this pathway are different in small for gestational age (SGA) babies, where placental blood flow is often altered. We showed that in healthy FpECs, blood flow increased NO signalling. We suggest that in SGA babies, FpECs have an increase in baseline levels of NO signalling, suggestive of a compensatory drive. Treating healthy and SGA cells with a Piezo1 chemical activator, Yoda1, upregulated NO signalling. This shows that Piezo1 is linked to NO and that in SGA, FpECs have the capacity to further increase NO. Further research will establish whether Piezo1 enhancement leads to increased blood flow in the placenta. If so, Piezo1 could be a new target for developing treatments to prevent poor growth of babies in the womb.


Assuntos
Células Endoteliais , Placenta , Gravidez , Feminino , Animais , Células Endoteliais/metabolismo , Placenta/metabolismo , Fosforilação , Idade Gestacional , Óxido Nítrico Sintase/metabolismo , Endotélio/metabolismo
2.
Placenta ; 113: 23-28, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33509641

RESUMO

The mechanical force of blood flow is a fundamental determinant of vascular homeostasis. This frictional stimulation of cells, fluid shear stress (FSS), is increasingly recognised as being essential to placental development and function. Here, we focus on the role of FSS in regulating fetoplacental circulatory flow, both in normal pregnancy and that affected by fetal growth restriction (FGR). The fetus is reliant on placental perfusion to meet its circulatory and metabolic demands. Failure of normal vascular adaptation and the mechanisms enabling responsive interaction between fetoplacental and maternal circulations can result in FGR. FSS generates vasodilatation at least partly through the release of endothelial nitric oxide, a process thought to be vital for adequate blood flow. Where FGR is caused by placental dysfunction, placental vascular anatomy is altered, alongside endothelial dysfunction and hypoxia, each impacting upon the complex balance of FSS forces. Identifying specific mechanical sensors and the mechanisms governing how FSS force is converted into biochemical signals is a fast-paced area of research. Here, we raise awareness of Piezo1 proteins, recently discovered to be FSS-sensitive in fetoplacental endothelium, and with emerging roles in NO generation, vascular tone and angiogenesis. We discuss the emerging concept that activating mechanosensors such as Piezo1 ultimately results in the orchestrated processes of placental vascular adaptation. Piecing together the mechanisms governing endothelial responses to FSS in placental insufficiency is an important step towards developing new treatments for FGR.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Circulação Placentária , Animais , Feminino , Feto/irrigação sanguínea , Hemodinâmica , Humanos , Gravidez , Artérias Umbilicais/fisiopatologia
3.
Mol Hum Reprod ; 25(6): 329-339, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30931481

RESUMO

Blood flow, and the force it generates, is critical to placental development and function throughout pregnancy. This mechanical stimulation of cells by the friction generated from flow is called shear stress (SS) and is a fundamental determinant of vascular homeostasis, regulating remodelling and vasomotor tone. This review describes how SS is fundamental to the establishment and regulation of the blood flow through the uteroplacental and fetoplacental circulations. Amongst the most recent findings is that alongside the endothelium, embryonic stem cells and the villous trophoblast are mechanically sensitive. A complex balance of forces is required to enable effective establishment of the uteroplacental circulation, while protecting the embryo and placental villi. SS also generates flow-mediated vasodilatation through the release of endothelial nitric oxide, a process vital for adequate placental blood flow. The identification of SS sensors and the mechanisms governing how the force is converted into biochemical signals is a fast-paced area of research, with multiple cellular components under investigation. For example, the Piezo1 ion channel is mechanosensitive in a variety of tissues including the fetoplacental endothelium. Enhanced Piezo1 activity has been demonstrated in response to the Yoda1 agonist molecule, suggesting the possibility for developing tools to manipulate these channels. Whether such agents might progress to novel therapeutics to improve blood flow through the placenta requires further consideration and research.


Assuntos
Mecanotransdução Celular/fisiologia , Placenta/metabolismo , Placentação/fisiologia , Células Endoteliais/metabolismo , Feminino , Humanos , Mecanotransdução Celular/genética , Placenta/citologia , Placentação/genética , Gravidez , Estresse Mecânico
4.
Mol Hum Reprod ; 24(10): 510-520, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085186

RESUMO

STUDY QUESTION: Does the shear stress sensing ion channel subunit Piezo1 have an important mechanotransduction role in human fetoplacental endothelium? SUMMARY ANSWER: Piezo1 is present and functionally active in human fetoplacental endothelial cells, and disruption of Piezo1 prevents the normal response to shear stress. WHAT IS KNOWN ALREADY: Shear stress is an important stimulus for maturation and function of placental vasculature but the molecular mechanisms by which the force is detected and transduced are unclear. Piezo1 channels are Ca2+-permeable non-selective cationic channels which are critical for shear stress sensing and maturation of murine embryonic vasculature. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We investigated the relevance of Piezo1 to placental vasculature by studying human fetoplacental endothelial cells (FpECs) from healthy pregnancies. Endothelial cells were isolated from placental cotyledons and cultured, for the study of tube formation and cell alignment to shear stress. In addition, human placental arterial endothelial cells were isolated and studied immediately by patch-clamp electrophysiology. MAIN RESULTS AND THE ROLE OF CHANCE: The synthetic Piezo1 channel agonist Yoda1 caused strong elevation of the intracellular Ca2+ concentration with a 50% effect occurring at about 5.4 µM. Knockdown of Piezo1 by RNA interference suppressed the Yoda1 response, consistent with it being mediated by Piezo1 channels. Alignment of cells to the direction of shear stress was also suppressed by Piezo1 knockdown without loss of cell viability. Patch-clamp recordings from freshly isolated endothelium showed shear stress-activated single channels which were characteristic of Piezo1. LIMITATIONS, REASONS FOR CAUTION: The in vitro nature of fetoplacental endothelial cell isolation and subsequent culture may affect FpEC characteristics and PIEZO1 expression. In addition to Piezo1, alternative shear stress sensing mechanisms have been suggested in other systems and might also contribute in the placenta. WIDER IMPLICATIONS OF THE FINDINGS: These data suggest that Piezo1 is an important molecular determinant of blood flow sensitivity in the placenta. Establishing and manipulating the molecular mechanisms regulating shear stress sensing could lead to novel therapeutic strategies to improve blood flow in the placenta. LARGE-SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTEREST(S): LCM was funded by a Clinical Research Training Fellowship from the Medical Research Council and by the Royal College of Obstetricians and Gynaecologists, and has received support from a Wellcome Trust Institutional Strategic Support Fund. JS was supported by the Wellcome Trust and a BHF Intermediate Research Fellowship. HJG, CW, AJH and PJW were supported by PhD Studentships from BHF, BBSRC and the Leeds Teaching Hospitals Charitable Foundation respectively. All authors declare no conflict of interest.


Assuntos
Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Placenta/citologia , Placenta/metabolismo , Células Cultivadas , Feminino , Humanos , Canais Iônicos/genética , Mecanotransdução Celular/fisiologia , Gravidez , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...