Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Int J Obes (Lond) ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491190

RESUMO

BACKGROUND: The adiponectin is one of the rare adipokines down-regulated with obesity and protects against obesity-related disorders. Similarly, the apolipoprotein M (apoM) is expressed in adipocytes and its expression in adipose tissue is associated with metabolic health. We compared circulating apoM with adiponectin regarding their relationship with metabolic parameters and insulin sensitivity and examined their gene expression patterns in adipocytes and in the adipose tissue. METHODS: Circulating apoM and adiponectin were examined in 169 men with overweight in a cross-sectional study, and 13 patients with obesity during a surgery-induced slimming program. Correlations with clinical parameters including the insulin resistance index (HOMA-IR) were analyzed. Multiple regression analyses were performed on HOMA-IR. The APOM and ADIPOQ gene expression were measured in the adipose tissue from 267 individuals with obesity and a human adipocyte cell line. RESULTS: Participants with type 2 diabetes had lower circulating adiponectin and apoM, while apoM was higher in individuals with dyslipidemia. Similar to adiponectin, apoM showed negative associations with HOMA-IR and hs-CRP (r < -0.2), and positive correlations with HDL markers (HDL-C and apoA-I, r > 0.3). Unlike adiponectin, apoM was positively associated with LDL markers (LDL-C and apoB100, r < 0.20) and negatively correlated with insulin and age (r < -0.2). The apoM was the sole negative determinant of HOMA-IR in multiple regression models, while adiponectin not contributing significantly. After surgery, the change in HOMA-IR was negatively associated with the change in circulating apoM (r = -0.71), but not with the change in adiponectin. The APOM and ADIPOQ gene expression positively correlated in adipose tissue (r > 0.44) as well as in adipocytes (r > 0.81). In adipocytes, APOM was downregulated by inflammatory factors and upregulated by adiponectin. CONCLUSIONS: The apoM rises as a new partner of adiponectin regarding insulin sensitivity. At the adipose tissue level, the adiponectin may be supported by apoM to promote a healthy adipose tissue. TRIAL REGISTRATION: NCT01277068, registered 13 January 2011; NCT02332434, registered 5 January 2015; and NCT00390637, registered 20 October 2006.

2.
Commun Biol ; 7(1): 346, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509307

RESUMO

The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.


Assuntos
Caquexia , Insuficiência Renal Crônica , Animais , Camundongos , Caquexia/complicações , Caquexia/metabolismo , Estudos Transversais , Insuficiência Renal Crônica/complicações , Redução de Peso , Composição Corporal/fisiologia
3.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38238601

RESUMO

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Glicerilfosforilcolina , Fosfolipases , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas , Músculo Esquelético/metabolismo , Fosfolipases/metabolismo , Glicerilfosforilcolina/metabolismo
4.
Cancer Res ; 83(17): 2824-2838, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327406

RESUMO

Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival. CD36 was dispensable for lipid uptake but fostered blast migration through its binding with thrombospondin-1. CD36-expressing blasts, which were largely enriched after chemotherapy, exhibited a senescent-like phenotype while maintaining their migratory ability. In xenograft mouse models, CD36 inhibition reduced metastasis of blasts and prolonged survival of chemotherapy-treated mice. These results pave the way for the development of CD36 as an independent marker of poor prognosis in AML patients and a promising actionable target to improve the outcome of patients. SIGNIFICANCE: CD36 promotes blast migration and extramedullary disease in acute myeloid leukemia and represents a critical target that can be exploited for clinical prognosis and patient treatment.


Assuntos
Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/patologia , Resultado do Tratamento , Prognóstico , Recidiva , Crise Blástica/patologia , Doença Crônica
5.
Biochimie ; 210: 35-39, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36758717

RESUMO

The robustness of scientific results is partly based on their reproducibility. Working with animal models, particularly in the field of metabolism, requires to avoid any source of stress to rule out a maximum of bias. Housing at room temperature is sufficient to induce thermal stress activating key thermogenic organs such as brown adipose tissue (BAT) and skeletal muscle. BAT covers most of the non-shivering thermogenesis in mice and burns a variety of fuels such as glucose and lipids. A high prevalence of BAT is associated with a strong protection against type 2 diabetes risk in humans, implying that BAT plays a key role in glucose homeostasis. However, thermal stress is poorly and inconsistently considered in experimental research. This thermal stress can significantly impede interpretation of phenotypes by favoring compensatory signaling pathways. Indeed, various studies revealed that thermoneutrality is essential to study metabolism in mice in order to reach a suitable level of "humanization". In this review, we briefly discuss if and how ambient temperature influence blood glucose homeostasis through BAT and muscle-fat crosstalk.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Animais , Camundongos , Temperatura , Glucose/metabolismo , Habitação , Diabetes Mellitus Tipo 2/metabolismo , Reprodutibilidade dos Testes , Tecido Adiposo Marrom/metabolismo , Músculo Esquelético/metabolismo , Termogênese/genética , Metabolismo Energético/fisiologia
6.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629822

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Assuntos
Endocanabinoides , Obesidade , Masculino , Animais , Camundongos , Endocanabinoides/metabolismo , Rimonabanto/farmacologia , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Fenótipo , Sacarose/farmacologia , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 14(1): 80, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604419

RESUMO

Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Tecido Adiposo , Diferenciação Celular/genética , Adipogenia/genética
8.
Ann Phys Rehabil Med ; 66(2): 101650, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35240326

RESUMO

BACKGROUND: Non-specific low back pain (LBP) is the leading cause of years lived with disability worldwide. Physical activity is an integral part of LBP treatment. OBJECTIVE: To critically review available evidence regarding the efficacy of physical activity for people with LBP. METHODS: Up to date critical narrative review of the efficacy of physical activity for the managment LBP. The process of article selection was unsystematic; articles were selected based on authors' expertise, self-knowledge and reflective practice. RESULTS: Therapeutic physical activity for LBP includes a wide range of non-specific and specific activities. The efficacy of physical activity on pain and activity limitations has been widely assessed. In acute and subacute LBP, exercise did not reduce pain compared to no exercise. In chronic low back pain (CLBP), exercise reduced pain at the earliest follow-up compared with no exercise. In a recent systematic review, exercise improved function both at the end of treatment and in the long-term compared with usual care. Exercice also reduced work disability in the long-term. We were unable to establish a clear hierarchy between different exercise modalities. Multidisciplinary functional programs consistently improved pain and function in the short- and long-term compared with usual care and physiotherapy and improved the long-term likelihood of returning to work compared to non-multidisciplinary programs. CONCLUSION: Physical activity of all types is an effective treatment for CLBP.


Assuntos
Dor Lombar , Humanos , Dor Lombar/terapia , Exercício Físico , Modalidades de Fisioterapia , Resultado do Tratamento , Medição da Dor
9.
Diabetes Metab ; 49(1): 101391, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174852

RESUMO

AIM: Mitochondrial dysfunction is associated with the development of type 2 diabetes mellitus (T2DM). It is thus of clinical relevance to identify plasma biomarkers of mitochondrial dysfunction associated with the risk of T2DM. ATPase inhibitory factor 1 (IF1) endogenously inhibits mitochondrial ATP synthase activity. Here, we analyzed association of the plasma IF1 level with markers of glucose homeostasis and with the conversion to new-onset diabetes (NOD) in individuals with prediabetes. METHODS: In the IT-DIAB prospective study, the baseline plasma level of IF1 was measured in 307 participants with prediabetes. The primary outcome was the incidence of NOD within five years of follow-up. Cross-sectional analysis of the IF1 level was also done in two independent interventional studies. Correlations between plasma IF1 and metabolic parameters at baseline were assessed by Spearman's correlation coefficients, and the association with the risk of NOD was determined using Cox proportional-hazards models. RESULTS: In IT-DIAB, the mean IF1 plasma level was lower in participants who developed NOD than in those who did not (537 ± 248 versus 621 ± 313 ng/mL, P   = 0.01). The plasma IF1 level negatively correlated with clinical variables associated with obesity and insulin resistance, including the body mass index (r = -0.20, P  = 0.0005) and homeostasis model assessment of insulin resistance (HOMA-IR). (r = -0.37, P < 0.0001). Conversely, IF1 was positively associated with plasma markers of cardiometabolic health, such as HDL-C (r = 0.63, P  <  0.0001) and apoA-I (r = 0.33, P  <  0.0001). These correlations were confirmed in cross-sectional analyses. In IT-DIAB, the IF1 level was significantly associated with a lower risk of T2DM after adjustment for age, sex, and fasting plasma glucose (HR [95% CI] per 1 SD = 0.76 [0.62; 0.94], P   = 0.012). CONCLUSION: We identified for the first time the mitochondrial-related biomarker IF1 as being associated with the risk of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Estudos Prospectivos , Estado Pré-Diabético/metabolismo , Estudos Transversais , Biomarcadores , Adenosina Trifosfatases
12.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333579

RESUMO

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

13.
Nat Rev Endocrinol ; 18(5): 273-289, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304603

RESUMO

The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.


Assuntos
Diabetes Mellitus Tipo 2 , Adipocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Humanos , Músculo Esquelético/metabolismo , Obesidade/metabolismo
14.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35041621

RESUMO

Impaired glucose metabolism is observed in obesity and type 2 diabetes. Glucose controls gene expression through the transcription factor ChREBP in liver and adipose tissues. Mlxipl encodes 2 isoforms: ChREBPα, the full-length form (translocation into the nucleus is under the control of glucose), and ChREBPß, a constitutively nuclear shorter form. ChREBPß gene expression in white adipose tissue is strongly associated with insulin sensitivity. Here, we investigated the consequences of ChREBPß deficiency on insulin action and energy balance. ChREBPß-deficient male and female C57BL6/J and FVB/N mice were produced using CRISPR/Cas9-mediated gene editing. Unlike global ChREBP deficiency, lack of ChREBPß showed modest effects on gene expression in adipose tissues and the liver, with variations chiefly observed in brown adipose tissue. In mice fed chow and 2 types of high-fat diets, lack of ChREBPß had moderate effects on body composition and insulin sensitivity. At thermoneutrality, ChREBPß deficiency did not prevent the whitening of brown adipose tissue previously reported in total ChREBP-KO mice. These findings revealed that ChREBPß is dispensable for metabolic adaptations to nutritional and thermic challenges.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica , RNA/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
J Clin Endocrinol Metab ; 107(1): e130-e142, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415992

RESUMO

CONTEXT: Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE: To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS: AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS: During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION: Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.


Assuntos
Tecido Adiposo/patologia , Dieta Redutora , Redes Reguladoras de Genes , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/patologia , Transcriptoma , Redução de Peso , Tecido Adiposo/metabolismo , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Feminino , Seguimentos , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Masculino , Obesidade/metabolismo , Prognóstico
16.
Med Sci (Paris) ; 37 Hors série n° 1: 19-21, 2021 Nov.
Artigo em Francês | MEDLINE | ID: mdl-34878388

RESUMO

Besides their well-known effect in the regulation of blood volume, natriuretic peptides have emerged during the last two decades as key metabolic hormones linking cardiac function to energy metabolism. Recent work from our laboratory underscores a new role of these peptides in the control of oxidative metabolism in skeletal muscle and open novel perspectives in the field of chronic diseases affecting skeletal muscles.


TITLE: Contrôle du métabolisme oxydatif musculaire par les peptides natriurétiques. ABSTRACT: En marge de leur effet sur la régulation de la volémie, les peptides natriurétiques émergent depuis une vingtaine d'années comme des hormones métaboliques reliant l'activité cardiaque au métabolisme énergétique. Des travaux récents de notre équipe soulignent un nouveau rôle de ces peptides dans le contrôle du métabolisme oxydatif musculaire et ouvrent de nouvelles perspectives dans l'étude des maladies chroniques affectant les muscles squelettiques.


Assuntos
Músculo Esquelético , Peptídeos Natriuréticos , Metabolismo Energético , Humanos , Estresse Oxidativo
17.
Cell Death Dis ; 12(9): 824, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471096

RESUMO

Cyclic adenosine monophosphate (cAMP) is a master regulator of mitochondrial metabolism but its precise mechanism of action yet remains unclear. Here, we found that a dietary saturated fatty acid (FA), palmitate increased intracellular cAMP synthesis through the palmitoylation of soluble adenylyl cyclase in cardiomyocytes. cAMP further induced exchange protein directly activated by cyclic AMP 1 (Epac1) activation, which was upregulated in the myocardium of obese patients. Epac1 enhanced the activity of a key enzyme regulating mitochondrial FA uptake, carnitine palmitoyltransferase 1. Consistently, pharmacological or genetic Epac1 inhibition prevented lipid overload, increased FA oxidation (FAO), and protected against mitochondrial dysfunction in cardiomyocytes. In addition, analysis of Epac1 phosphoproteome led us to identify two key mitochondrial enzymes of the the ß-oxidation cycle as targets of Epac1, the long-chain FA acyl-CoA dehydrogenase (ACADL) and the 3-ketoacyl-CoA thiolase (3-KAT). Epac1 formed molecular complexes with the Ca2+/calmodulin-dependent protein kinase II (CaMKII), which phosphorylated ACADL and 3-KAT at specific amino acid residues to decrease lipid oxidation. The Epac1-CaMKII axis also interacted with the α subunit of ATP synthase, thereby further impairing mitochondrial energetics. Altogether, these findings indicate that Epac1 disrupts the balance between mitochondrial FA uptake and oxidation leading to lipid accumulation and mitochondrial dysfunction, and ultimately cardiomyocyte death.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácido Palmítico/toxicidade , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Catecolaminas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , L-Lactato Desidrogenase/metabolismo , Lipoilação/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Oxirredução , Fosfoproteínas/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Estresse Fisiológico/efeitos dos fármacos
19.
Am J Physiol Endocrinol Metab ; 321(3): E325-E337, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34250814

RESUMO

The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.


Assuntos
Adaptação Fisiológica , Sistema Cardiovascular/metabolismo , Estilo de Vida , Obesidade/metabolismo , Programas de Redução de Peso , Adulto , Fatores Etários , Idoso , Composição Corporal , Humanos , Masculino , Pessoa de Meia-Idade
20.
Anal Chim Acta ; 1155: 338358, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33766325

RESUMO

Glycerol is a clinical biomarker of lipolysis that is mainly produced by adipose tissues. Blood glycerol content increases in pathological conditions such as metabolic and cardiovascular diseases or cancer cachexia, but also in response to energetic stress such as physical exercise. Accurate glycerol monitoring is therefore important in a range of healthcare contexts. However, current methods available for the quantification of glycerol are expensive, time-consuming, and require the extraction of plasma from blood, from which blood glycerol content is then extrapolated. Here, we report the development of a new point-of-care glycerometer device, DietSee, based on a strip-type biosensor that enables the quantification of glycerol directly from whole blood in 6 s. The performance of the biosensor was first evaluated using buffer solutions and spiked human and mouse plasma samples, and its response was compared with that of the gold-standard colorimetric method. The results obtained using DietSee correlated strongly with those from the reference method and demonstrated a linear response to glycerol levels across a wide range of concentrations (40-750 µM) that were representative of those in the human body. Next, the biosensor was validated using spiked human blood samples over a range of 30-55% hematocrit; it also demonstrated a strong correlation with reference measurements under these conditions (R2 = 0.97). In addition, the biosensor was only minimally affected by a variety of potential interferents (endogenous and exogenous) and was highly stable in storage (more than 2 years when strips were stored dry at 4 °C). Finally, we investigated the application of the biosensor to real-time monitoring of lipolysis and found that the DietSee is well adapted for this purpose in both human and mouse samples. To conclude, the novel DietSee glycerometer is a sensitive, selective, and rapid tool that enables characterization of the metabolic status of an individual by measuring the glycerol concentration from a single fingertip blood drop.


Assuntos
Técnicas Biossensoriais , Glicerol , Animais , Colorimetria , Lipólise , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...