Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Microbiol ; 15: 1342887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591029

RESUMO

Baby chicks administered a fecal transplant from adult chickens are resistant to Salmonella colonization by competitive exclusion. A two-pronged approach was used to investigate the mechanism of this process. First, Salmonella response to an exclusive (Salmonella competitive exclusion product, Aviguard®) or permissive microbial community (chicken cecal contents from colonized birds containing 7.85 Log10Salmonella genomes/gram) was assessed ex vivo using a S. typhimurium reporter strain with fluorescent YFP and CFP gene fusions to rrn and hilA operon, respectively. Second, cecal transcriptome analysis was used to assess the cecal communities' response to Salmonella in chickens with low (≤5.85 Log10 genomes/g) or high (≥6.00 Log10 genomes/g) Salmonella colonization. The ex vivo experiment revealed a reduction in Salmonella growth and hilA expression following co-culture with the exclusive community. The exclusive community also repressed Salmonella's SPI-1 virulence genes and LPS modification, while the anti-virulence/inflammatory gene avrA was upregulated. Salmonella transcriptome analysis revealed significant metabolic disparities in Salmonella grown with the two different communities. Propanediol utilization and vitamin B12 synthesis were central to Salmonella metabolism co-cultured with either community, and mutations in propanediol and vitamin B12 metabolism altered Salmonella growth in the exclusive community. There were significant differences in the cecal community's stress response to Salmonella colonization. Cecal community transcripts indicated that antimicrobials were central to the type of stress response detected in the low Salmonella abundance community, suggesting antagonism involved in Salmonella exclusion. This study indicates complex community interactions that modulate Salmonella metabolism and pathogenic behavior and reduce growth through antagonism may be key to exclusion.

2.
Front Genet ; 15: 1308113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333619

RESUMO

The livestock industry in Türkiye is vital to the country's agricultural sector and economy. In particular, sheep products are an important source of income and livelihood for many Turkish smallholder farmers in semi-arid and highland areas. Türkiye is one of the largest sheep producers in the world and its sheep production system is heavily dependent on indigenous breeds. Given the importance of the sheep industry in Türkiye, a systematic literature review on sheep breeding and genetic improvement in the country is needed for the development and optimization of sheep breeding programs using modern approaches, such as genomic selection. Therefore, we conducted a comprehensive literature review on the current characteristics of sheep populations and farms based on the most up-to-date census data and breeding and genetic studies obtained from scientific articles. The number of sheep has increased in recent years, mainly due to the state's policy of supporting livestock farming and the increase in consumer demand for sheep dairy products with high nutritional and health benefits. Most of the genetic studies on indigenous Turkish sheep have been limited to specific traits and breeds. The use of genomics was found to be incipient, with genomic analysis applied to only two major breeds for heritability or genome-wide association studies. The scope of heritability and genome-wide association studies should be expanded to include traits and breeds that have received little or no attention. It is also worth revisiting genetic diversity studies using genome-wide single nucleotide polymorphism markers. Although there was no report of genomic selection in Turkish sheep to date, genomics could contribute to overcoming the difficulties of implementing traditional pedigree-based breeding programs that require accurate pedigree recording. As indigenous sheep breeds are better adapted to the local environmental conditions, the proper use of breeding strategies will contribute to increased income, food security, and reduced environmental footprint in a sustainable manner.

3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134209

RESUMO

Computer vision (CV), a non-intrusive and cost-effective technology, has furthered the development of precision livestock farming by enabling optimized decision-making through timely and individualized animal care. The availability of affordable two- and three-dimensional camera sensors, combined with various machine learning and deep learning algorithms, has provided a valuable opportunity to improve livestock production systems. However, despite the availability of various CV tools in the public domain, applying these tools to animal data can be challenging, often requiring users to have programming and data analysis skills, as well as access to computing resources. Moreover, the rapid expansion of precision livestock farming is creating a growing need to educate and train animal science students in CV. This presents educators with the challenge of efficiently demonstrating the complex algorithms involved in CV. Thus, the objective of this study was to develop ShinyAnimalCV, an open-source cloud-based web application designed to facilitate CV teaching in animal science. This application provides a user-friendly interface for performing CV tasks, including object segmentation, detection, three-dimensional surface visualization, and extraction of two- and three-dimensional morphological features. Nine pre-trained CV models using top-view animal data are included in the application. ShinyAnimalCV has been deployed online using cloud computing platforms. The source code of ShinyAnimalCV is available on GitHub, along with detailed documentation on training CV models using custom data and deploying ShinyAnimalCV locally to allow users to fully leverage the capabilities of the application. ShinyAnimalCV can help to support the teaching of CV, thereby laying the groundwork to promote the adoption of CV in the animal science community.


The integration of cameras and data science has great potential to revolutionize livestock production systems, making them more efficient and sustainable by replacing human-based management with real-time individualized animal care. However, applying these digital tools to animal data presents challenges that require computer programming and data analysis skills, as well as access to computing resources. Additionally, there is a growing need to train animal science students to analyze image or video data using data science algorithms. However, teaching computer programming to all types of students from the ground up can prove complicated and challenging. Therefore, the objective of this study was to develop ShinyAnimalCV, a user-friendly online web application that supports users to learn the application of data science to analyze animal digital video data, without the need for complex coding. The application includes nine pre-trained models for detecting and segmenting animals in image data and can be easily accessed through a web browser. We have also made the source code and detailed documentation available online for advanced users who wish to use the application locally. This software tool facilitates the teaching of digital animal data analysis in the animal science community, with potential benefits to livestock production systems.


Assuntos
Computação em Nuvem , Imageamento Tridimensional , Animais , Imageamento Tridimensional/veterinária , Software , Computadores , Criação de Animais Domésticos , Gado
4.
JDS Commun ; 4(5): 363-368, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37727246

RESUMO

Growth traits, such as body weight and height, are essential in the design of genetic improvement programs of dairy cattle due to their relationship with feeding efficiency, longevity, and health. We investigated genomic regions influencing height across growth stages in Japanese Holstein cattle using a single-step random regression model. We used 72,921 records from birth to 60 mo of age with 4,111 animals born between 2000 and 2016. The analysis included 1,410 genotyped animals with 35,319 single nucleotide polymorphisms, consisting of 883 females with records and 527 bulls, and 30,745 animals with pedigree information. A single genomic region at the 58.4 megabase pair on chromosome 18 was consistently identified across 6 age points of 10, 20, 30, 40, 50, and 60 mo after multiple testing corrections for the significance threshold. Twelve candidate genes, previously reported for longevity and gestation length, were found near the identified genomic region. Another location near the identified region was also previously associated with body conformation, fertility, and calving difficulty. Functional Gene Ontology enrichment analysis suggested that the candidate genes regulate dephosphorylation and phosphatase activity. Our findings show that further study of the identified candidate genes will contribute to a better understanding of the genetic basis of height in Japanese Holstein cattle.

5.
Front Vet Sci ; 10: 1121499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483284

RESUMO

Heat stress is an important problem for dairy industry in many parts of the world owing to its adverse effects on productivity and profitability. Heat stress in dairy cattle is caused by an increase in core body temperature, which affects the fat production in the mammary gland. It reduces milk yield, dry matter intake, and alters the milk composition, such as fat, protein, lactose, and solids-not-fats percentages among others. Understanding the biological mechanisms of climatic adaptation, identifying and exploring signatures of selection, genomic diversity and identification of candidate genes for heat tolerance within indicine and taurine dairy breeds is an important progression toward breeding better dairy cattle adapted to changing climatic conditions of the tropics. Identifying breeds that are heat tolerant and their use in genetic improvement programs is crucial for improving dairy cattle productivity and profitability in the tropics. Genetic improvement for heat tolerance requires availability of genetic parameters, but these genetic parameters are currently missing in many tropical countries. In this article, we reviewed the HS effects on dairy cattle with regard to (1) physiological parameters; (2) milk yield and composition traits; and (3) milk and blood metabolites for dairy cattle reared in tropical countries. In addition, mitigation strategies such as physical modification of environment, nutritional, and genetic development of heat tolerant dairy cattle to prevent the adverse effects of HS on dairy cattle are discussed. In tropical climates, a more and cost-effective strategy to overcome HS effects is to genetically select more adaptable and heat tolerant breeds, use of crossbred animals for milk production, i.e., crosses between indicine breeds such as Gir, white fulani, N'Dama, Sahiwal or Boran to taurine breeds such as Holstein-Friesian, Jersey or Brown Swiss. The results of this review will contribute to policy formulations with regard to strategies for mitigating the effects of HS on dairy cattle in tropical countries.

6.
Plant Direct ; 7(4): e492, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37102161

RESUMO

Plant growth-promoting bacteria (PGPB) may be of use for increasing crop yield and plant resilience to biotic and abiotic stressors. Using hyperspectral reflectance data to assess growth-related traits may shed light on the underlying genetics as such data can help assess biochemical and physiological traits. This study aimed to integrate hyperspectral reflectance data with genome-wide association analyses to examine maize growth-related traits under PGPB inoculation. A total of 360 inbred maize lines with 13,826 single nucleotide polymorphisms (SNPs) were evaluated with and without PGPB inoculation; 150 hyperspectral wavelength reflectances at 386-1021 nm and 131 hyperspectral indices were used in the analysis. Plant height, stalk diameter, and shoot dry mass were measured manually. Overall, hyperspectral signatures produced similar or higher genomic heritability estimates than those of manually measured phenotypes, and they were genetically correlated with manually measured phenotypes. Furthermore, several hyperspectral reflectance values and spectral indices were identified by genome-wide association analysis as potential markers for growth-related traits under PGPB inoculation. Eight SNPs were detected, which were commonly associated with manually measured and hyperspectral phenotypes. Different genomic regions were found for plant growth and hyperspectral phenotypes between with and without PGPB inoculation. Moreover, the hyperspectral phenotypes were associated with genes previously reported as candidates for nitrogen uptake efficiency, tolerance to abiotic stressors, and kernel size. In addition, a Shiny web application was developed to explore multiphenotype genome-wide association results interactively. Taken together, our results demonstrate the usefulness of hyperspectral-based phenotyping for studying maize growth-related traits in response to PGPB inoculation.

7.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36881928

RESUMO

The asymmetric increase in average nighttime temperatures relative to increase in average daytime temperatures due to climate change is decreasing grain yield and quality in rice. Therefore, a better genome-level understanding of the impact of higher night temperature stress on the weight of individual grains is essential for future development of more resilient rice. We investigated the utility of metabolites obtained from grains to classify high night temperature (HNT) conditions of genotypes, and metabolites and single-nucleotide polymorphisms (SNPs) to predict grain length, width, and perimeter phenotypes using a rice diversity panel. We found that the metabolic profiles of rice genotypes alone could be used to classify control and HNT conditions with high accuracy using random forest or extreme gradient boosting. Best linear unbiased prediction and BayesC showed greater metabolic prediction performance than machine learning models for grain-size phenotypes. Metabolic prediction was most effective for grain width, resulting in the highest prediction performance. Genomic prediction performed better than metabolic prediction. Integrating metabolites and genomics simultaneously in a prediction model slightly improved prediction performance. We did not observe a difference in prediction between the control and HNT conditions. Several metabolites were identified as auxiliary phenotypes that could be used to enhance the multi-trait genomic prediction of grain-size phenotypes. Our results showed that, in addition to SNPs, metabolites collected from grains offer rich information to perform predictive analyses, including classification modeling of HNT responses and regression modeling of grain-size-related phenotypes in rice.


Assuntos
Oryza , Temperatura , Oryza/genética , Temperatura Alta , Grão Comestível/genética , Fenótipo , Genômica
8.
Front Genet ; 14: 1108416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992702

RESUMO

Introduction: Sesame is an ancient oilseed crop containing many valuable nutritional components. The demand for sesame seeds and their products has recently increased worldwide, making it necessary to enhance the development of high-yielding cultivars. One approach to enhance genetic gain in breeding programs is genomic selection. However, studies on genomic selection and genomic prediction in sesame have yet to be conducted. Methods: In this study, we performed genomic prediction for agronomic traits using the phenotypes and genotypes of a sesame diversity panel grown under Mediterranean climatic conditions over two growing seasons. We aimed to assess prediction accuracy for nine important agronomic traits in sesame using single- and multi-environment analyses. Results: In single-environment analysis, genomic best linear unbiased prediction, BayesB, BayesC, and reproducing kernel Hilbert spaces models showed no substantial differences. The average prediction accuracy of the nine traits across these models ranged from 0.39 to 0.79 for both growing seasons. In the multi-environment analysis, the marker-by-environment interaction model, which decomposed the marker effects into components shared across environments and environment-specific deviations, improved the prediction accuracies for all traits by 15%-58% compared to the single-environment model, particularly when borrowing information from other environments was made possible. Discussion: Our results showed that single-environment analysis produced moderate-to-high genomic prediction accuracy for agronomic traits in sesame. The multi-environment analysis further enhanced this accuracy by exploiting marker-by-environment interaction. We concluded that genomic prediction using multi-environmental trial data could improve efforts for breeding cultivars adapted to the semi-arid Mediterranean climate.

9.
Front Genet ; 14: 1127175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923799

RESUMO

Dairy cattle are highly susceptible to heat stress. Heat stress causes a decline in milk yield, reduced dry matter intake, reduced fertility rates, and alteration of physiological traits (e.g., respiration rate, rectal temperature, heart rates, pulse rates, panting score, sweating rates, and drooling score) and other biomarkers (oxidative heat stress biomarkers and stress response genes). Considering the significant effect of global warming on dairy cattle farming, coupled with the aim to reduce income losses of dairy cattle farmers and improve production under hot environment, there is a need to develop heat tolerant dairy cattle that can grow, reproduce and produce milk reasonably under the changing global climate and increasing temperature. The identification of heat tolerant dairy cattle is an alternative strategy for breeding thermotolerant dairy cattle for changing climatic conditions. This review synthesizes information pertaining to quantitative genetic models that have been applied to estimate genetic parameters for heat tolerance and relationship between measures of heat tolerance and production and reproductive performance traits in dairy cattle. Moreover, the review identified the genes that have been shown to influence heat tolerance in dairy cattle and evaluated the possibility of using them in genomic selection programmes. Combining genomics information with environmental, physiological, and production parameters information is a crucial strategy to understand the mechanisms of heat tolerance while breeding heat tolerant dairy cattle adapted to future climatic conditions. Thus, selection for thermotolerant dairy cattle is feasible.

10.
Front Genet ; 13: 948240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338989

RESUMO

Data integration using hierarchical analysis based on the central dogma or common pathway enrichment analysis may not reveal non-obvious relationships among omic data. Here, we applied factor analysis (FA) and Bayesian network (BN) modeling to integrate different omic data and complex traits by latent variables (production, carcass, and meat quality traits). A total of 14 latent variables were identified: five for phenotype, three for miRNA, four for protein, and two for mRNA data. Pearson correlation coefficients showed negative correlations between latent variables miRNA 1 (mirna1) and miRNA 2 (mirna2) (-0.47), ribeye area (REA) and protein 4 (prot4) (-0.33), REA and protein 2 (prot2) (-0.3), carcass and prot4 (-0.31), carcass and prot2 (-0.28), and backfat thickness (BFT) and miRNA 3 (mirna3) (-0.25). Positive correlations were observed among the four protein factors (0.45-0.83): between meat quality and fat content (0.71), fat content and carcass (0.74), fat content and REA (0.76), and REA and carcass (0.99). BN presented arcs from the carcass, meat quality, prot2, and prot4 latent variables to REA; from meat quality, REA, mirna2, and gene expression mRNA1 to fat content; from protein 1 (prot1) and mirna2 to protein 5 (prot5); and from prot5 and carcass to prot2. The relations of protein latent variables suggest new hypotheses about the impact of these proteins on REA. The network also showed relationships among miRNAs and nebulin proteins. REA seems to be the central node in the network, influencing carcass, prot2, prot4, mRNA1, and meat quality, suggesting that REA is a good indicator of meat quality. The connection among miRNA latent variables, BFT, and fat content relates to the influence of miRNAs on lipid metabolism. The relationship between mirna1 and prot5 composed of isoforms of nebulin needs further investigation. The FA identified latent variables, decreasing the dimensionality and complexity of the data. The BN was capable of generating interrelationships among latent variables from different types of data, allowing the integration of omics and complex traits and identifying conditional independencies. Our framework based on FA and BN is capable of generating new hypotheses for molecular research, by integrating different types of data and exploring non-obvious relationships.

11.
Front Plant Sci ; 13: 1026472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304400

RESUMO

Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.

12.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056754

RESUMO

This paper presents the application of machine learning algorithms to identify pigs' behaviors from data collected using the wireless sensor nodes mounted on pigs. The sensor node attached to a pig's back senses the acceleration and angular velocity in three axes, and the sensed data are transmitted to a host computer wirelessly. Two video cameras, one attached to the ceiling of the pigpen and the other one to a fence, provided ground truth for data annotations. The data were collected from pigs for 131 h over 2 mo. As the typical behavior period depends on the behavior type, we segmented the acceleration data with different window sizes (WS) and step sizes (SS), and tested how the classification performance of different activities varied with different WS and SS. After exploring the possible combinations, we selected the optimum WS and SS. To compare performance, we used five machine learning algorithms, specifically support vector machine, k-nearest neighbors, decision trees, naive Bayes, and random forest (RF). Among the five algorithms, RF achieved the highest F1 score for four major behaviors consisting of 92.36% in total. The F1 scores of the algorithm were 0.98 for "eating," 0.99 for "lying," 0.93 for "walking," and 0.91 for "standing" behaviors. The optimal WS was 7 s for "eating" and "lying," and 3 s for "walking" and "standing." The proposed work demonstrates that, based on the length of behavior, the adaptive window and step sizes increase the classification performance.


Analyzing the behavior of pigs provides great insights into animal welfare and health. Technologies that enable automatic, continuous, and real-time behavior monitoring have emerged as alternative solutions and have received considerable attention. Using sensor-based animal monitoring technology, we could provide objective and quantitative assessments of the health and continuous care of pigs. We extracted distinct characteristics/features of different activities over given segments of acceleration data to boost classification performance. Pigs have various behavior patterns with different durations; treating behaviors with a small duration the same as a long duration could ignore the minority behaviors in the window frame. Our study showed that by finding the adaptive window sizes customized for individual behaviors, we could reduce the chance of mixing activities and compute the feature for better classification performance.


Assuntos
Aceleração , Máquina de Vetores de Suporte , Suínos , Animais , Teorema de Bayes , Aprendizado de Máquina , Algoritmos
13.
Plant Genome ; 15(3): e20228, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904052

RESUMO

The recent advancement in image-based phenotyping platforms enables the acquisition of large-scale nondestructive crop phenotypes measured at frequent intervals. To further understand the underlying genetic basis over a physiological process and improve plant breeding programs, the question of how to efficiently utilize these time-series measurements in genome-enabled analysis including genomic prediction and genome-wide association studies (GWASs) should be considered. In this paper, a Bayesian random regression model with mixture priors is developed to introduce more meaningful biological assumptions to the analysis of longitudinal traits. The mixture prior for marker effects in Bayes Cπ is implemented in our developed model (RR-BayesC) for demonstration purpose. The estimation of single-nucleotide polymorphism-specific effects that are related to the dynamic performance of crops and the accuracy of genomic prediction by RR-BayesC were studied through both simulated and real rice (Oryza sativa L.) data. For genomic prediction, three predictive scenarios were studied. In the simulated study, RR-BayesC showed a significantly higher prediction accuracy than that obtained by single-trait analysis, especially for days when heritability were low. In real data analysis, RR-BayesC showed relatively high prediction accuracy when forecast is required for phenotypes at later period (e.g., from 0.94 to 0.98 for lines with observations at an earlier period and from 0.65 to 0.67 for lines without any observations). For GWASs, inference of single markers and inference of genomic windows were conducted. In the simulated study, RR-BayesC showed its promising ability to distinguish quantitative trait loci (QTL) that are invariant to temporal covariates and QTL that interact with time. An association study of real data was also presented to demonstrate the application of RR-BayesC in real data analysis. In this paper, we develop a Bayesian random regression model that is able to incorporate mixture priors to marker effects and show improved performance of genomic prediction and GWASs for longitudinal data analysis based on both simulated and real data. The software tool JWAS offers routines to perform our proposed random regression analysis.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Teorema de Bayes , Modelos Genéticos , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas
14.
Methods Mol Biol ; 2539: 269-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895210

RESUMO

The advent of plant phenomics, coupled with the wealth of genotypic data generated by next-generation sequencing technologies, provides exciting new resources for investigations into and improvement of complex traits. However, these new technologies also bring new challenges in quantitative genetics, namely, a need for the development of robust frameworks that can accommodate these high-dimensional data. In this chapter, we describe methods for the statistical analysis of high-throughput phenotyping (HTP) data with the goal of enhancing the prediction accuracy of genomic selection (GS). Following the Introduction in Sec. 1, Sec. 2 discusses field-based HTP, including the use of unoccupied aerial vehicles and light detection and ranging, as well as how we can achieve increased genetic gain by utilizing image data derived from HTP. Section 3 considers extending commonly used GS models to integrate HTP data as covariates associated with the principal trait response, such as yield. Particular focus is placed on single-trait, multi-trait, and genotype by environment interaction models. One unique aspect of HTP data is that phenomics platforms often produce large-scale data with high spatial and temporal resolution for capturing dynamic growth, development, and stress responses. Section 4 discusses the utility of a random regression model for performing longitudinal modeling. The chapter concludes with a discussion of some standing issues.


Assuntos
Genômica , Fenômica , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
15.
Front Genet ; 13: 866176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591856

RESUMO

Estimated breeding values (EBV) for fecal egg counts (FEC) at 42-90 days of age (WFEC) and 91-150 days of age (PFEC) for 84 progeny-tested Katahdin sires were used to identify associations of deregressed EBV with single-nucleotide polymorphisms (SNP) using 388,000 SNP with minor-allele frequencies ≥0.10 on an Illumina high-density ovine array. Associations between markers and FEC EBV were initially quantified by single-SNP linear regression. Effects of linkage disequilibrium (LD) were minimized by assigning SNP to 2,535 consecutive 1-Mb bins and focusing on the effect of the most significant SNP in each bin. Bonferroni correction was used to define bin-based (BB) genome- and chromosome-wide significance. Six bins on chromosome 5 achieved BB genome-wide significance for PFEC EBV, and three of those SNP achieved chromosome-wide significance after Bonferroni correction based on the 14,530 total SNP on chromosome 5. These bins were nested within 12 consecutive bins between 59 and 71 Mb on chromosome 5 that reached BB chromosome-wide significance. The largest SNP effects were at 63, 67, and 70 Mb, with LD among these SNP of r 2 ≤ 0.2. Regional heritability mapping (RHM) was then used to evaluate the ability of different genomic regions to account for additive variance in FEC EBV. Chromosome-level RHM indicated that one 500-SNP window between 65.9 and 69.9 Mb accounted for significant variation in PFEC EBV. Five additional 500-SNP windows between 59.3 and 71.6 Mb reached suggestive (p < 0.10) significance for PFEC EBV. Although previous studies rarely identified markers for parasite resistance on chromosome 5, the IL12B gene at 68.5 Mb codes for the p40 subunit of both interleukins 12 and 23. Other immunoregulatory genes are also located in this region of chromosome 5, providing opportunity for additive or associative effects.

16.
Heredity (Edinb) ; 129(2): 93-102, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538221

RESUMO

Genomic loci that control the variance of agronomically important traits are increasingly important due to the profusion of unpredictable environments arising from climate change. The ability to identify such variance-controlling loci in association studies will be critical for future breeding efforts. Two statistical approaches that have already been used in the variance genome-wide association study (vGWAS) paradigm are the Brown-Forsythe test (BFT) and the double generalized linear model (DGLM). To ensure that these approaches are deployed as effectively as possible, it is critical to study the factors that influence their ability to identify variance-controlling loci. We used genome-wide marker data in maize (Zea mays L.) and Arabidopsis thaliana to simulate traits controlled by epistasis, genotype by environment (GxE) interactions, and variance quantitative trait nucleotides (vQTNs). We then quantified true and false positive detection rates of the BFT and DGLM across all simulated traits. We also conducted a vGWAS using both the BFT and DGLM on plant height in a maize diversity panel. The observed true positive detection rates at the maximum sample size considered (N = 2815) suggest that both of these vGWAS approaches are capable of identifying epistasis and GxE for sufficiently large sample sizes. We also noted that the DGLM decisively outperformed the BFT for simulated traits controlled by vQTNs at sample sizes of N = 500. Although we conclude that there are still certain aspects of vGWAS approaches that need further refinement, this study suggests that the BFT and DGLM are capable of identifying variance-controlling loci in current state-of-the-art plant or agronomic data sets.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/genética
17.
J Anim Sci ; 100(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486674

RESUMO

Precision livestock farming has become an important research focus with the rising demand of meat production in the swine industry. Currently, the farming practice is widely conducted by the technology of computer vision (CV), which automates monitoring pig activity solely based on video recordings. Automation is fulfilled by deriving imagery features that can guide CV systems to recognize animals' body contours, positions, and behavioral categories. Nevertheless, the performance of the CV systems is sensitive to the quality of imagery features. When the CV system is deployed in a variable environment, its performance may decrease as the features are not generalized enough under different illumination conditions. Moreover, most CV systems are established by supervised learning, in which intensive effort in labeling ground truths for the training process is required. Hence, a semi-supervised pipeline, VTag, is developed in this study. The pipeline focuses on long-term tracking of pig activity without requesting any pre-labeled video but a few human supervisions to build a CV system. The pipeline can be rapidly deployed as only one top-view RGB camera is needed for the tracking task. Additionally, the pipeline was released as a software tool with a friendly graphical interface available to general users. Among the presented datasets, the average tracking error was 17.99 cm. Besides, with the prediction results, the pig moving distance per unit time can be estimated for activity studies. Finally, as the motion is monitored, a heat map showing spatial hot spots visited by the pigs can be useful guidance for farming management. The presented pipeline saves massive laborious work in preparing training dataset. The rapid deployment of the tracking system paves the way for pig behavior monitoring.


Collecting detailed measurements of animals through cameras has become an important focus with the rising demand for meat production in the swine industry. Currently, researchers use computational approaches to train models to recognize pig morphological features and monitor pig behaviors automatically. Though little human effort is needed after model training, current solutions require a large amount of pre-selected images for the training process, and the expensive preparation work is difficult for many farms to implement such practice. Hence, a pipeline, VTag, is presented to address these challenges in our study. With few supervisions, VTag can automatically track positions of multiple pigs from one single top-view RGB camera. No pre-labeled images are required to establish a robust pig tracking system. Additionally, the pipeline was released as a software tool with a friendly graphical user interface, that is easy to learn for general users. Among the presented datasets, the average tracking error is 17.99 cm, which is shorter than one-third of the pig body length in the study. The estimated pig activity from VTag can serve as useful farming guidance. The presented strategy saves massive laborious work in preparing training datasets and setting up monitoring environments. The rapid deployment of the tracking system paves the way for pig behavior monitoring.


Assuntos
Inteligência Artificial , Software , Animais , Fazendas , Suínos , Gravação em Vídeo
18.
Transl Anim Sci ; 6(4): txac163, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36601061

RESUMO

Animal dimensions are essential indicators for monitoring their growth rate, diet efficiency, and health status. A computer vision system is a recently emerging precision livestock farming technology that overcomes the previously unresolved challenges pertaining to labor and cost. Depth sensor cameras can be used to estimate the depth or height of an animal, in addition to two-dimensional information. Collecting top-view depth images is common in evaluating body mass or conformational traits in livestock species. However, in the depth image data acquisition process, manual interventions are involved in controlling a camera from a laptop or where detailed steps for automated data collection are not documented. Furthermore, open-source image data acquisition implementations are rarely available. The objective of this study was to 1) investigate the utility of automated top-view dairy cow depth data collection methods using picture- and video-based methods, 2) evaluate the performance of an infrared cut lens, 3) and make the source code available. Both methods can automatically perform animal detection, trigger recording, capture depth data, and terminate recording for individual animals. The picture-based method takes only a predetermined number of images whereas the video-based method uses a sequence of frames as a video. For the picture-based method, we evaluated 3- and 10-picture approaches. The depth sensor camera was mounted 2.75 m above-the-ground over a walk-through scale between the milking parlor and the free-stall barn. A total of 150 Holstein and 100 Jersey cows were evaluated. A pixel location where the depth was monitored was set up as a point of interest. More than 89% of cows were successfully captured using both picture- and video-based methods. The success rates of the picture- and video-based methods further improved to 92% and 98%, respectively, when combined with an infrared cut lens. Although both the picture-based method with 10 pictures and the video-based method yielded accurate results for collecting depth data on cows, the former was more efficient in terms of data storage. The current study demonstrates automated depth data collection frameworks and a Python implementation available to the community, which can help facilitate the deployment of computer vision systems for dairy cows.

20.
Front Plant Sci ; 13: 1086007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816489

RESUMO

The sucrose and Alanine (Ala) content in edamame beans significantly impacts the sweetness flavor of edamame-derived products as an important attribute to consumers' acceptance. Unlike grain-type soybeans, edamame beans are harvested as fresh beans at the R6 to R7 growth stages when beans are filled 80-90% of the pod capacity. The genetic basis of sucrose and Ala contents in fresh edamame beans may differ from those in dry seeds. To date, there is no report on the genetic basis of sucrose and Ala contents in the edamame beans. In this study, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) related to sucrose and Ala levels in edamame beans using an association mapping panel of 189 edamame accessions genotyped with a SoySNP50K BeadChip. A total of 43 and 25 SNPs was associated with sucrose content and Ala content in the edamame beans, respectively. Four genes (Glyma.10g270800, Glyma.08g137500, Glyma.10g268500, and Glyma.18g193600) with known effects on the process of sucrose biosynthesis and 37 novel sucrose-related genes were characterized. Three genes (Gm17g070500, Glyma.14g201100 and Glyma.18g269600) with likely relevant effects in regulating Ala content and 22 novel Ala-related genes were identified. In addition, by summarizing the phenotypic data of edamame beans from three locations in two years, three PI accessions (PI 532469, PI 243551, and PI 407748) were selected as the high sucrose and high Ala parental lines for the perspective breeding of sweet edamame varieties. Thus, the beneficial alleles, candidate genes, and selected PI accessions identified in this study will be fundamental to develop edamame varieties with improved consumers' acceptance, and eventually promote edamame production as a specialty crop in the United States.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...