Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402106, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110145

RESUMO

Supramolecular recognition of nucleobases and short sequences is an emerging research field focusing on possible applications to treat many diseases. Controlling the affinity and selectivity of synthetic receptors to target desired nucleotides or short sequences is a highly challenging task. Herein, we elucidate the effect of substituents in the phenyl ring of the anthracene-benzene azacyclophane on the recognition of nucleoside triphosphates (NTPs) and double-stranded DNA. We show that introducing phenyl rings increases the affinity for NTPs 10-fold and implements groove and intercalation binding modes with double-stranded DNA. NMR studies and molecular modeling calculations support the ability of cyclophanes to encapsulate nucleobases as part of nucleotides.

2.
Chem Commun (Camb) ; 60(45): 5840-5843, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38751319

RESUMO

Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles via spray-drying.

3.
J Am Chem Soc ; 146(10): 7105-7115, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417151

RESUMO

The binding of nucleotides is crucial for signal transduction as it induces conformational protein changes, leading to downstream cellular responses. Synthetic receptors that bind nucleotides and transduce the binding event into global conformational rearrangements are highly challenging to design, especially those that operate in an aqueous solution. Much work is focused on evaluating functionalized dyes to detect nucleotides, whereas coupling of a nucleotide-induced conformational switching to a sensing event has not been reported to date. We disclose synthetic receptors that undergo a global conformational rearrangement upon nucleotide binding. Integrating naphthalimide and the pyridinium ion into the structure enables stabilization of the folded conformation and efficient fluorescence quenching. The binding of a nucleotide rearranges the receptor conformation and alters the strong fluorescence enhancement. The methylpyridinium-containing receptor demonstrated high sensing selectivity for adenosine 5'-triphosphate (ATP) and a record 160-fold fluorescence enhancement. It can detect fluctuations of ATP in HeLa cells and possesses low cytotoxicity. The developed systems present an attractive approach for designing ATP-responsive artificial molecular switches that operate in water and integrate a strong fluorescence response.


Assuntos
Trifosfato de Adenosina , Receptores Artificiais , Humanos , Trifosfato de Adenosina/química , Fluorescência , Células HeLa , Nucleotídeos/metabolismo , Tomografia por Emissão de Pósitrons , Espectrometria de Fluorescência , Conformação Proteica , Corantes Fluorescentes/química , Difosfato de Adenosina/metabolismo
4.
JACS Au ; 3(3): 964-977, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006770

RESUMO

Supramolecular recognition of nucleotides would enable manipulating crucial biochemical pathways like transcription and translation directly and with high precision. Therefore, it offers great promise in medicinal applications, not least in treating cancer or viral infections. This work presents a universal supramolecular approach to target nucleoside phosphates in nucleotides and RNA. The artificial active site in new receptors simultaneously realizes several binding and sensing mechanisms: encapsulation of a nucleobase via dispersion and hydrogen bonding interactions, recognition of the phosphate residue, and a self-reporting feature-"turn-on" fluorescence. Key to the high selectivity is the conscious separation of phosphate- and nucleobase-binding sites by introducing specific spacers in the receptor structure. We have tuned the spacers to achieve high binding affinity and selectivity for cytidine 5' triphosphate coupled to a record 60-fold fluorescence enhancement. The resulting structures are also the first functional models of poly(rC)-binding protein coordinating specifically to C-rich RNA oligomers, e.g., the 5'-AUCCC(C/U) sequence present in poliovirus type 1 and the human transcriptome. The receptors bind to RNA in human ovarian cells A2780, causing strong cytotoxicity at 800 nM. The performance, self-reporting property, and tunability of our approach open up a promising and unique avenue for sequence-specific RNA binding in cells by using low-molecular-weight artificial receptors.

5.
J Bioinform Comput Biol ; 20(4): 2250012, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35798684

RESUMO

The evolutionary histories of genes are susceptible of differing greatly from each other which could be explained by evolutionary variations in horizontal gene transfers or biological recombinations. A phylogenetic tree would therefore represent the evolutionary history of each gene, which may present different patterns from the species tree that defines the main evolutionary patterns. In addition, phylogenetic trees of closely related species should be merged, thus minimizing the topological conflicts they present and obtaining consensus trees (in the case of homogeneous data) or supertrees (in the case of heterogeneous data). The traditional approaches are consensus tree inference (if the set of trees contains the same set of species) or supertrees (if the set of trees contains different, but overlapping sets of species). Consensus trees and supertrees are constructed to produce unique trees. However, these methods lose precision with respect to different evolutionary variability. Other approaches have been implemented to preserve this variability using the [Formula: see text]-means algorithm or the [Formula: see text]-medoids algorithm. Using a new method, we determine all possible consensus trees and supertrees that best represent the most significant evolutionary models in a set of phylogenetic trees, thereby increasing the precision of the results and decreasing the time required. Results: This paper presents in detail a new method for predicting the number of clusters in a Robinson and Foulds (RF) distance matrix using a convolutional neural network (CNN). We developed a new CNN approach (called CNNTrees) for multiple tree classification. This new strategy returns a number of clusters of the input phylogenetic trees for different-size sets of trees, which makes the new approach more stable and more robust. The paper provides an in-depth analysis of the relevant, but very difficult, problem of constructing alternative supertrees using phylogenies with different but overlapping sets of taxa. This new model will play an important role in the inference of Trees of Life (ToL). Availability and implementation: CNNTrees is available through a web server at https://tahirinadia.github.io/. The source code, data and information about installation procedures are also available at https://github.com/TahiriNadia/CNNTrees. Supplementary information: Supplementary data are available on GitHub platform. The evolutionary history of species is not unique, but is specific to sets of genes. Indeed, each gene has its own evolutionary history that differs considerably from one gene to another. For example, some individual genes or operons may be affected by specific horizontal gene transfer and recombination events. Thus, the evolutionary history of each gene must be represented by its own phylogenetic tree, which may exhibit different evolutionary patterns than the species tree that accounts for the major vertical descent patterns. The result of traditional consensus tree or supertree inference methods is a single consensus tree or supertree. In this paper, we present in detail a new method for predicting the number of clusters in a Robinson and Foulds (RF) distance matrix using a convolutional neural network (CNN). We developed a new CNN approach (CNNTrees) to construct multiple tree classification. This new strategy returns a number of clusters in the order of the input trees, which allows this new approach to be more stable and also more robust.


Assuntos
Algoritmos , Redes Neurais de Computação , Transferência Genética Horizontal , Filogenia , Software
6.
Chem Commun (Camb) ; 57(81): 10632-10635, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581337

RESUMO

A novel strategy to design "turn-on" fluorescent receptors for G-quadruplexes of DNA is presented, which relies on the connection of phosphate binding macrocycles (PBM) with naphthalimide dyes. A new PBM-dye family was synthesized and evaluated in terms of binding and detection of nucleotides and DNA G-quadruplexes of different topologies.


Assuntos
DNA/química , Corantes Fluorescentes/química , Fosfatos/química , Corantes Fluorescentes/síntese química , Quadruplex G , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Espectrometria de Fluorescência
7.
ChemistryOpen ; 9(2): 99, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025459

RESUMO

Invited for this month's cover picture is the group of Evgeny A. Kataev at the Technical University Chemnitz. The cover picture shows the authors' association of fluorescence anion sensing with pearl hunting - the activity of recovering pearls from wild molluscs. In the presented work, the group of Kataev has developed a new water-soluble amido-amine azacryptand bearing a fluorescence anthracene dicarboxamide fragment. With the help of the fluorescent receptors (a hand) one can catch the phosphate anion (a glowing pearl) and visualize this binding event. The recognition of phosphate and oxalate has led to a fluorescent enhancement in a selective manner. Read the full text of their Communication at https://doi.org/10.1002/open.201900309.

8.
ChemistryOpen ; 9(2): 171-175, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025461

RESUMO

A new amido-amine cage receptor, which combines 1,8-anthracene diacarboxamide subunit and a polyammonium azamacrocycle, is reported. Bearing both the hydrogen bond donor and the acceptor binding sites, the receptor is able to bind phosphate selectively under neutral (pH 7.2) aqueous conditions. The recognition events for phosphate and dicarboxylates are accomplished by a fluorescence enhancement in the anthracene emission. As revealed by experimental and theoretical studies, phosphate and oxalate show different recognition modes. Phosphate demonstrates hydrogen bond acceptor properties, while the coordination of oxalate favours the protonation of the receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA