Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312707, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391153

RESUMO

Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.

2.
Polymers (Basel) ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139941

RESUMO

A fibrillar hydrogel was obtained by covalent crosslinking via Diels-Alder reaction of two types of cellulose nanocrystals (CNCs) with furan and maleimide groups. Gelation has been studied at various ratios of components and temperatures in the range from 20 to 60 °C. It was shown that the rheological properties of the hydrogel can be optimized by varying the concentration and ratio of components. Due to the rigid structure of the CNCs, the hydrogel could be formed at a concentration of at least 5 wt%; however, it almost does not swell either in water with pH 5 or 7 or in the HBSS buffer. The introduction of aldehyde groups into the CNCs allows for the conjugation of physiologically active molecules containing primary amino groups due to the formation of imine bonds. Here, we used benzocaine as a model drug for conjugation with CNC hydrogel. The resulting drug-conjugated hydrogel demonstrated the stability of formulation at pH 7 and a pH-sensitive release of benzocaine due to the accelerated hydrolytic cleavage of the imine bond at pH < 7. The developed drug-conjugated hydrogel is promising as wound dressings for local anesthesia.

3.
Chem Soc Rev ; 52(15): 5317-5339, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37464914

RESUMO

Nanocolloidal gels (NCGs) are an emerging class of soft matter, in which nanoparticles act as building blocks of the colloidal network. Chemical or physical crosslinking enables NCG synthesis and assembly from a broad range of nanoparticles, polymers, and low-molecular weight molecules. The synergistic properties of NCGs are governed by nanoparticle composition, dimensions and shape, the mechanism of nanoparticle bonding, and the NCG architecture, as well as the nature of molecular crosslinkers. Nanocolloidal gels find applications in soft robotics, bioengineering, optically active coatings and sensors, optoelectronic devices, and absorbents. This review summarizes currently scattered aspects of NCG formation, properties, characterization, and applications. We describe the diversity of NCG building blocks, discuss the mechanisms of NCG formation, review characterization techniques, outline NCG fabrication and processing methods, and highlight most common NCG applications. The review is concluded with the discussion of perspectives in the design and development of NCGs.

4.
ACS Nano ; 17(15): 15012-15024, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459253

RESUMO

Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard-hard, hard-soft, and soft-soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing.

5.
Gels ; 9(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826272

RESUMO

The Diels-Alder (DA) reaction is a promising tool for obtaining covalently crosslinked hydrogels due to its reaction bioorthogonality, the absence of by-products, and the application of mild conditions without a catalyst. The resulting hydrogels are in demand for use in various fields of materials science and biomedicine. While the dynamic nature of the cycloaddition of diene and dienophile has previously been used extensively for the fabrication of self-healing materials, it has only recently spread to the expansion of the functional properties of polymer gels for bioapplications. This review describes strategies and recent examples of obtaining hydrogels based on the DA reaction, demonstrating that the emerging functional properties go beyond self-healing. The types of classifications of hydrogels are listed, depending on the type of reaction and the nature of the components. Examples of obtaining hydrogels based on the normal and inverse electron-demand DA reaction, as well as the application of hydrogels for cell culture, drug delivery, injectable gels, and wound dressings, are considered. In conclusion, possible developmental directions are discussed, including the use of diene-dienophile pairs with a low temperature for the reversal of DA reaction, the modification of nanoparticles by diene and/or dienophile fragments, and new applications such as ink for 3D printing, sensing hydrogels, etc.

6.
J Colloid Interface Sci ; 635: 348-357, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36592504

RESUMO

HYPOTHESIS: Hydrogels based on cellulose nanocrystals (CNC) have attracted great interest because of their sustainability, biocompatibility, mechanical strength and fibrillar structure. Gelation of colloidal particles can be induced by the introduction of polymers. Existing examples include gels based on CNC and derivatives of cellulose or poly(vinyl alcohol), however, gel structure and their application for extrusion printing were not shown. Hence, we rationalize formation of colloidal gels based on mixture of poly(N-isopropylacrylamide) (PNIPAM) and CNC and control their structure and mechanical properties by variation of components ratio. EXPERIMENTS: State diagram for colloidal system based on mixture of PNIPAM and CNC were established at 25 and 37 °C. Biocompatibility, fiber diameter and rheological properties of the gels were studied for different PNIPAM/CNC ratio. FINDINGS: We show that depending on the ratio between PNIPAM and CNC, colloidal system could be in sol or gel state at 25 °C and at gel state or phase separated at 37 °C. Physically crosslinked hydrogels were thermosensitive and could reversibly change it transparency from translucent to opaque in biologically relevant temperature range. These colloidal hydrogels were biocompatible, had fibrillar structure and demonstrate shear-thinning behavior, which makes them a promising material for bioapplications related to extrusion printing.

7.
Biomacromolecules ; 24(3): 1173-1183, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36580573

RESUMO

Applications of polymer hydrogels in separation technologies, environmental remediation, and drug delivery require control of hydrogel transport properties that are largely governed by the pore dimensions. Stimulus-responsive change in pore size offers the capability to change gel's transport properties "on demand". Here, we report a nanocolloidal hydrogel that exhibits temperature-controlled increase in pore size and, as a result, enhanced transport of encapsulated species from the gel. The hydrogel was formed by the covalent cross-linking of aldehyde-modified cellulose nanocrystals and chitosan carrying end-grafted poly(N-isopropylacrylamide) (pNIPAm) molecules. Owing to the temperature-mediated coil-to-globule transition of pNIPAm grafts, they acted as a temperature-responsive "gate" in the hydrogel. At elevated temperature, the size of the pores showed up to a 4-fold increase, with no significant changes in volume, in contrast with conventional pNIPAm-derived gels exhibiting a reduction in both pore size and volume in similar conditions. Temperature-mediated transport properties of the gel were explored by studying diffusion of nanoparticles with different dimensions from the gel, leading to the established correlation between the kinetics of diffusion-governed nanoparticle release and the ratio nanoparticle dimensions-to-pore size. The proposed approach to stimulus-responsive control of hydrogel transport properties has many applications, including their use in nanomedicine and tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Hidrogéis/química , Polímeros , Nanomedicina , Temperatura
8.
Polymers (Basel) ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38231967

RESUMO

This review summarizes recent advances in the application of 3D printing (additive manufacturing) for the fabrication of various components of hydrogen fuel cells with a polymer electrolyte membrane (HFC-PEMs). This type of fuel cell is an example of green renewable energy, but its active implementation into the real industry is fraught with a number of problems, including rapid degradation and low efficiency. The application of 3D printing is promising for improvement in HFC-PEM performance due to the possibility of creating complex geometric shapes, the exact location of components on the substrate, as well as the low-cost and simplicity of the process. This review examines the use of various 3D printing techniques, such as inkjet printing, fused deposition modeling (FDM) and stereolithography, for the production/modification of electrodes, gas diffusion and catalyst layers, as well as bipolar plates. In conclusion, the challenges and possible solutions of the identified drawbacks for further development in this field of research are discussed. It is expected that this review article will benefit both representatives of applied science interested in specific engineering solutions and fundamental science aimed at studying the processes occurring in the fuel cell.

9.
Polymers (Basel) ; 14(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36559906

RESUMO

In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, which has to deal with ether a solid rod or liquid. By application of plastic 3D printing on an FDM printer, specific details, namely, the plunger system and parts of the gel supply system, were produced and combined with a modified printer. Two types of printing of polymer hydrogels were optimized: droplet and filament modes. The rheological ranges suitable for printing for each method were indicated, and the resolution of the samples obtained and the algorithms for creating g-code via Python scripts were given. We have shown the possibility of droplet printing of microspheres with a diameter of 100 microns and a distance between spheres of 200 microns, as well as filament printing of lines with a thickness of 300-2000 microns, which is appropriate accuracy in comparison with commercial printers. This method, in addition to scientific groups, will be especially promising for educational tasks (as a practical work for engineering students or for the introduction of 3D printing into school classes) and industrial groups, as a way to implement 3D extrusion printing of composite polymer hydrogels in a time- and cost-effective way.

10.
Front Chem ; 8: 724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134249

RESUMO

Titanium dioxide (TiO2) is one of the most widely used materials in resistive switching applications, including random-access memory, neuromorphic computing, biohybrid interfaces, and sensors. Most of these applications are still at an early stage of development and have technological challenges and a lack of fundamental comprehension. Furthermore, the functional memristive properties of TiO2 thin films are heavily dependent on their processing methods, including the synthesis, fabrication, and post-fabrication treatment. Here, we outline and summarize the key milestone achievements, recent advances, and challenges related to the synthesis, technology, and applications of memristive TiO2. Following a brief introduction, we provide an overview of the major areas of application of TiO2-based memristive devices and discuss their synthesis, fabrication, and post-fabrication processing, as well as their functional properties.

11.
Membranes (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961905

RESUMO

The growing concern for climate change and global warming has given rise to investigations in various research fields, including one particular area dedicated to the creation of solid sorbents for efficient CO2 capture. In this work, a new family of poly(ionic liquid)s (PILs) comprising cationic polyureas (PURs) with tetrafluoroborate (BF4) anions has been synthesized. Condensation of various diisocyanates with novel ionic diamines and subsequent ion metathesis reaction resulted in high molar mass ionic PURs (Mw = 12 ÷ 173 × 103 g/mol) with high thermal stability (up to 260 °C), glass transition temperatures in the range of 153-286 °C and remarkable CO2 capture (10.5-24.8 mg/g at 0 °C and 1 bar). The CO2 sorption was found to be dependent on the nature of the cation and structure of the diisocyanate. The highest sorption was demonstrated by tetrafluoroborate PUR based on 4,4'-methylene-bis(cyclohexyl isocyanate) diisocyanate and aromatic diamine bearing quinuclidinium cation (24.8 mg/g at 0 °C and 1 bar). It is hoped that the present study will inspire novel design strategies for improving the sorption properties of PILs and the creation of novel effective CO2 sorbents.

12.
Nanomaterials (Basel) ; 10(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764463

RESUMO

This study is devoted to the development of photonic patterns based on polystyrene spheres (PSS) incorporated in chitosan hydrogels by inkjet printing. Using this method, high-resolution encrypted images that became visible only in high humidity were obtained. Inks based on PSS with carboxylic groups on the surface were made, and their rheological parameters (viscosity, surface tension, and ζ-potential) were optimized according to the Ohnesorge theory. The obtained value of the ζ-potential indicated the stability of the synthesized colloidal inks. The dependences of the printing parameters on the concentration of ethylene glycol in PSS dispersion, the drop spacing, the shape of the printed pattern, waveform, the temperature of the printing process, and the degree of ordering of the PSS-based photonic crystal were investigated. The scanning electronic microscope (SEM) images confirmed that the optimal self-organization of PSS was achieved at the following values of 0.4% weight fraction (wt%) carboxylic groups, the drop spacing of 50 µm, and the temperature of the printing table of 25 °C. High-resolution microstructures were obtained by drop-on-demand printing with a deposited drophead diameter of 21 µm and an accuracy of ±2 µm on silicon and glass substrates. The deposition of chitosan-based hydrogels on the obtained polystyrene photonic crystals allowed reversibly changing the order of the diffraction lattice of the photonic crystal during the swelling of the hydrogel matrix, which led to a quick optical response in the daylight. The kinetics of the appearance of the optical response of the obtained coating were discussed. The simplicity of production, the speed of image appearance, and the ability to create high-resolution patterns determine the potential applications of the proposed systems as humidity sensors or anticounterfeiting coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...