Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 53(12): 534-545, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755572

RESUMO

Increased arterial stiffness is an independent risk factor for hypertension, stroke, and cardiovascular morbidity. Thus, understanding the factors contributing to vascular stiffness is of critical importance. Here, we used a rat model containing a known quantitative trait locus (QTL) on chromosome 3 (RNO3) for vasoreactivity to assess potential genetic elements contributing to blood pressure, arterial stiffness, and their downstream effects on cardiac structure and function. Although no differences were found in blood pressure at any time point between parental spontaneously hypertensive rats (SHRs) and congenic SHR.BN3 rats, the SHRs showed a significant increase in arterial stiffness measured by pulse wave velocity. The degree of arterial stiffness increased with age in the SHRs and was associated with compensatory cardiac changes at 16 wk of age, and decompensatory changes at 32 wk, with no change in cardiac structure or function in the SHR.BN3 hearts at these time points. To evaluate the arterial wall structure, we used multiphoton microscopy to quantify cells and collagen content within the adventitia and media of SHR and SHR.BN3 arteries. No difference in cell numbers or proliferation rates was found, although phenotypic diversity was characterized in vascular smooth muscle cells. Herein, significant anatomical and physiological differences related to arterial structure and cardiovascular tone including collagen, pulse wave velocity (PWV), left ventricular (LV) geometry and function, and vascular smooth muscle cell (VSMC) contractile apparatus proteins were associated with the RNO3 QTL, thus providing a novel platform for studying arterial stiffness. Future studies delimiting the RNO3 QTL could aid in identifying genetic elements responsible for arterial structure and function.


Assuntos
Cromossomos de Mamíferos/genética , Hipertensão/genética , Hipertensão/fisiopatologia , Locos de Características Quantitativas , Rigidez Vascular/genética , Fatores Etários , Animais , Artérias/fisiopatologia , Pressão Sanguínea/genética , Proteínas Contráteis/metabolismo , Masculino , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Fenótipo , Análise de Onda de Pulso , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Transdução de Sinais/genética , Remodelação Ventricular/genética
2.
J Immunol ; 206(7): 1443-1453, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658296

RESUMO

Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic ß cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Pâncreas/imunologia , Receptor de Insulina/metabolismo , Linfócitos T/imunologia , Adolescente , Adulto , Animais , Movimento Celular , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Risco , Adulto Jovem
3.
Physiol Genomics ; 52(11): 549-557, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991251

RESUMO

The novel coronavirus SARS-CoV-2 was identified as the causative agent for a series of atypical respiratory diseases in the Hubei Province of Wuhan, China in December of 2019. The disease SARS-CoV-2, termed COVID-19, was officially declared a pandemic by the World Health Organization on March 11, 2020. SARS-CoV-2 contains a single-stranded, positive-sense RNA genome surrounded by an extracellular membrane containing a series of spike glycoproteins resembling a crown. COVID-19 infection results in diverse symptoms and morbidity depending on individual genetics, ethnicity, age, and geographic location. In severe cases, COVID-19 pathophysiology includes destruction of lung epithelial cells, thrombosis, hypercoagulation, and vascular leak leading to sepsis. These events lead to acute respiratory distress syndrome (ARDS) and subsequent pulmonary fibrosis in patients. COVID-19 risk factors include cardiovascular disease, hypertension, and diabetes, which are highly prevalent in the United States. This population has upregulation of the angiotensin converting enzyme-2 (ACE2) receptor, which is exploited by COVID-19 as the route of entry and infection. Viral envelope proteins bind to and degrade ACE2 receptors, thus preventing normal ACE2 function. COVID-19 infection causes imbalances in ACE2 and induces an inflammatory immune response, known as a cytokine storm, both of which amplify comorbidities within the host. Herein, we discuss the genetics, pathogenesis, and possible therapeutics of COVID-19 infection along with secondary complications associated with disease progression, including ARDS and pulmonary fibrosis. Understanding the mechanisms of COVID-19 infection will allow the development of vaccines or other novel therapeutic approaches to prevent transmission or reduce the severity of infection.


Assuntos
COVID-19/epidemiologia , COVID-19/genética , Doenças Cardiovasculares/epidemiologia , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , Criança , Pré-Escolar , Comorbidade , Feminino , Predisposição Genética para Doença , Saúde Global , Humanos , Imunização Passiva , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Estados Unidos/epidemiologia , Vacinação , Vacinas Virais/imunologia , Adulto Jovem , Soroterapia para COVID-19 , Tratamento Farmacológico da COVID-19
4.
J Biol Chem ; 295(29): 9804-9822, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32404366

RESUMO

Activation of lipid-burning pathways in the fat-storing white adipose tissue (WAT) is a promising strategy to improve metabolic health and reduce obesity, insulin resistance, and type II diabetes. For unknown reasons, bilirubin levels are negatively associated with obesity and diabetes. Here, using mice and an array of approaches, including MRI to assess body composition, biochemical assays to measure bilirubin and fatty acids, MitoTracker-based mitochondrial analysis, immunofluorescence, and high-throughput coregulator analysis, we show that bilirubin functions as a molecular switch for the nuclear receptor transcription factor peroxisome proliferator-activated receptor α (PPARα). Bilirubin exerted its effects by recruiting and dissociating specific coregulators in WAT, driving the expression of PPARα target genes such as uncoupling protein 1 (Ucp1) and adrenoreceptor ß 3 (Adrb3). We also found that bilirubin is a selective ligand for PPARα and does not affect the activities of the related proteins PPARγ and PPARδ. We further found that diet-induced obese mice with mild hyperbilirubinemia have reduced WAT size and an increased number of mitochondria, associated with a restructuring of PPARα-binding coregulators. We conclude that bilirubin strongly affects organismal body weight by reshaping the PPARα coregulator profile, remodeling WAT to improve metabolic function, and reducing fat accumulation.


Assuntos
Tecido Adiposo Branco/metabolismo , Bilirrubina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , PPAR alfa/metabolismo , Animais , Bilirrubina/metabolismo , Camundongos , Receptores Adrenérgicos beta 3/biossíntese , Proteína Desacopladora 1/biossíntese
5.
Bioconjug Chem ; 30(7): 2049-2059, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31274300

RESUMO

Type 1 diabetes (T1D) is an autoimmune disorder characterized by autoimmune cell mediated destruction of pancreatic beta cells. Pancreatic beta cells are the only source of insulin in the body. T1D patients then have to depend on insulin injections for their lifetime. Insulin injection can modulate the blood sugar levels, but insulin has little effect on the autoimmune process. Altered peptide ligands (APL) derived from known autoantigens in T1D are able to induce tolerance in autoreactive cells in T1D animal models, but are currently unable to elicit this protection in humans. There is a need to improve immunogenicity of the APLs, as these short peptides can be easily degraded by enzymes in the blood. GAD546-554 is a dominant epitope recognized by autoreactive T cells in the nonobese diabetic (NOD) mouse model that can cause destruction of beta cells. Alanine substitution at the eighth position of GAD546-554 peptide (APL9) induced tolerance in a GAD546-554 specific cytotoxic T lymphocyte clone. To improve the antigen presentation and endosomal escape of APL9, we developed a bioconjugate platform that consists of a liposome containing a bioconjugate of APL9 and toll-like receptor 2 ligand Pam3CysSK4 as well as an antibody against macrophage protein F4/80. APL9 bioconjugate liposome with F4/80 antibody was able to induce tolerance in a GAD 546-554 specific clone. Diabetic NOD splenocytes pretreated with APL9 bioconjugate were also not able to transfer diabetes into prediabetic NOD recipient mice. This work is beneficial to prevent T1D as an immunotherapy strategy to render autoreactive immune cells more tolerant of beta cells.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Peptídeos/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Feminino , Tolerância Imunológica/efeitos dos fármacos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Camundongos Endogâmicos NOD , Peptídeos/síntese química , Peptídeos/química , Linfócitos T Citotóxicos/imunologia
6.
Diabetes ; 68(9): 1819-1829, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31167877

RESUMO

We identified autoantibodies (AAb) reacting with a variant IA-2 molecule (IA-2var) that has three amino acid substitutions (Cys27, Gly608, and Pro671) within the full-length molecule. We examined IA-2var AAb in first-degree relatives of type 1 diabetes (T1D) probands from the TrialNet Pathway to Prevention Study. The presence of IA-2var-specific AAb in relatives was associated with accelerated progression to T1D in those positive for AAb to GAD65 and/or insulin but negative in the standard test for IA-2 AAb. Furthermore, relatives with single islet AAb (by traditional assays) and carrying both IA-2var AAb and the high-risk HLA-DRB1*04-DQB1*03:02 haplotype progress rapidly to onset of T1D. Molecular modeling of IA-2var predicts that the genomic variation that alters the three amino acids induces changes in the three-dimensional structure of the molecule, which may lead to epitope unmasking in the IA-2 extracellular domain. Our observations suggest that the presence of AAb to IA-2var would identify high-risk subjects who would benefit from participation in prevention trials who have one islet antibody by traditional testing and otherwise would be misclassified as "low risk" relatives.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1/diagnóstico , Cadeias HLA-DRB1/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Haplótipos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Biol Methods ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862308

RESUMO

The insulin receptor (IR) is a transmembrane receptor which recognizes and binds the hormone insulin. We describe two models that were devised to explore the role of IR over-expression on T-lymphocytes and their chemotactic motility in the progression of type 1 diabetes. FVB/NJ-CD3-3×FLAG-mIR/MFM mice were generated to selectively over-express 3×FLAG tagged murine IR in T-lymphocytes via an engineered CD3 enhancer and promoter construct. Insertion of the 3×FLAG-mIR transgene into FVB/NJ mice, a known non-autoimmune prone strain, lead to a minor population of detectable 3×FLAG-mIR tagged T-lymphocytes in peripheral blood and the presence of a few lymphocytes in the pancreas of the Tg+/- compared to age matched Tg-/- control mice. In order to induce stronger murine IR over-expression then what was observed with the CD3 enhancer promoter construct, a second system utilizing the strong CAG viral promoter was generated. This system induces cell specific IR over-expression upon Cre-Lox recombination to afford functional 3×FLAG tagged murine IR with an internal eGFP reporter. The pPNTlox2-3×FLAG-mIR plasmid was constructed and validated in HEK-Cre-RFP cells to ensure selective Cre recombinase based 3×FLAG-mIR expression, receptor ligand affinity towards insulin, and functional initiation of signal transduction upon insulin stimulation.

8.
Diabetes Care ; 40(4): 561-568, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28174261

RESUMO

OBJECTIVE: The characterization of diverse subtypes of diabetes is a dynamic field of clinical research and an active area of discussion. The objective of this study was to identify new antigenic determinants in the neuroendocrine autoantigen IA-2 (ICA512) and assess whether circulating autoantibodies directed to new IA-2 epitopes identify autoimmune diabetes in young and adult populations with diabetes. RESEARCH DESIGN AND METHODS: Clinically diagnosed patients with type 2 diabetes (n = 258; diabetes duration: 0.01-31 years) were evaluated using a new biomarker detecting autoantibodies directed to the extracellular domain of the neuroendocrine autoantigen IA-2 (IA-2ec). The proportion of IA-2ec autoantibodies was also evaluated in newly diagnosed patients with type 1 diabetes (n = 150; diabetes duration: 0.04-0.49 years). In addition, IA-2 (intracellular domain), GAD65, and zinc transporter 8 autoantibodies were assayed. RESULTS: IA-2ec autoantibodies were detected in patients with type 1 diabetes and, surprisingly, in 5% of patients with type 2 diabetes without serologic responses to other IA-2 antigenic epitopes or other islet autoantigens. We also assessed the ability of IA-2ec-derived peptides to elicit CD4+ T-cell responses by stimulating peripheral blood mononuclear cells from patients with type 1 diabetes (n = 18) and HLA-matched healthy subjects (n = 13) with peptides and staining with the peptide/DQ8-specific tetramers, observing disease-associated responses to previously unreported epitopes within IA-2ec. CONCLUSIONS: We developed a new antibody biomarker identifying novel antigenic determinants within the N terminus of IA-2. IA-2ec autoantibodies can be detected in patients with type 1 diabetes and in a subgroup of adult autoimmune patients with type 2 diabetes phenotype negative for conventional islet autoantibody testing. These observations suggest that islet autoimmunity may be more common in clinically diagnosed type 2 diabetes than previously observed.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Epitopos/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Adolescente , Adulto , Autoanticorpos/imunologia , Autoantígenos/imunologia , Biomarcadores/análise , Criança , Pré-Escolar , Diabetes Mellitus Tipo 2/imunologia , Feminino , Glutamato Descarboxilase/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Adulto Jovem
9.
Mol Aspects Med ; 42: 42-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25579746

RESUMO

Type 1 diabetes mellitus (T1DM) is an autoimmune disease arising through a complex interaction of both genetic and immunologic factors. Similar to the majority of autoimmune diseases, T1DM usually has a relapsing remitting disease course with autoantibody and T cellular responses to islet autoantigens, which precede the clinical onset of the disease process. The immunological diagnosis of autoimmune diseases relies primarily on the detection of autoantibodies in the serum of T1DM patients. Although their pathogenic significance remains uncertain, they have the practical advantage of serving as surrogate biomarkers for predicting the clinical onset of T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (i.e. HLA), and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)]. In addition, HLA alleles such as DQB1*0602 are associated with dominant protection from T1DM in multiple populations. A discordance rate of greater than 50% between monozygotic twins indicates a potential involvement of environmental factors on disease development. Viral infections may play a role in the chain of events leading to disease, albeit conclusive evidence linking infections with T1DM remains to be firmly established. Two syndromes have been described in which an immune-mediated form of diabetes occurs as the result of a single gene defect. These syndromes are termed autoimmune polyglandular syndrome type I (APS-I) or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), and X-linked poyendocrinopathy, immune dysfunction and diarrhea (XPID). These two syndromes are unique models to understand the mechanisms involved in the loss of tolerance to self-antigens in autoimmune diabetes and its associated organ-specific autoimmune disorders. A growing number of animal models of these diseases have greatly helped elucidate the immunologic mechanisms leading to autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Autoanticorpos , Proteínas de Transporte de Cátions/imunologia , Predisposição Genética para Doença , Glutamato Descarboxilase/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Complexo Principal de Histocompatibilidade/genética , Transportador 8 de Zinco
10.
J Biol Chem ; 287(21): 17882-17893, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22447927

RESUMO

ICA69 (islet cell autoantigen 69 kDa) is a protein implicated in type 1 diabetes mellitus in both the non-obese diabetic (NOD) mouse model and humans. ICA69 is encoded by the Ica1 gene on mouse chromosome 6 A1-A2. We previously reported reduced ICA69 expression in the thymus of NOD mice compared with thymus of several non-diabetic mouse strains. We propose that reduced thymic ICA69 expression could result from variations in transcriptional regulation of the gene and that polymorphisms within the Ica1 core promoter may partially determine this transcriptional variability. We characterized the functional promoter of Ica1 in NOD mice and compared it with the corresponding portions of Ica1 in non-diabetic C57BL/6 mice. Luciferase reporter constructs demonstrated that the NOD Ica1 promoter region exhibited markedly reduced luciferase expression in transiently transfected medullary thymus epithelial (mTEC(+)) and B-cell (M12)-derived cell lines. However, in a non-diabetic strain, C57BL/6, the Ica1 promoter region was transcriptionally active when transiently transfected into the same cell lines. We concomitantly identified five single nucleotide polymorphisms within the NOD Ica1 promoter. One of these single nucleotide polymorphisms increases the binding affinity for the transcription factor AIRE (autoimmune regulator), which is highly expressed in thymic epithelial cells, where it is known to play a key role regulating self-antigen expression. We conclude that polymorphisms within the NOD Ica1 core promoter may determine AIRE-mediated down-regulation of ICA69 expression in medullary thymic epithelial cells, thus providing a novel mechanistic explanation for the loss of immunologic tolerance to this self-antigen in autoimmunity.


Assuntos
Autoantígenos/biossíntese , Diabetes Mellitus Tipo 1/metabolismo , Regulação para Baixo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Autoantígenos/genética , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fatores de Transcrição/genética , Proteína AIRE
11.
Endocrinology ; 151(6): 2528-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382696

RESUMO

The objective of this study was to determine whether antigenic determinants localized within the extracellular domain of the neuroendocrine autoantigen tyrosine phosphatase-like protein IA-2 are targets of humoral responses in type 1 diabetes (T1DM). Previous studies indicated that the immunodominant region of IA-2 is localized within its intracellular domain (IA-2ic; amino acids 601-979). We analyzed 333 subjects from the Children's Hospital of Pittsburgh study, 102 of whom progressed to insulin-requiring diabetes (prediabetics). Autoantibodies from these individuals were initially assayed for ICA512bdc (Barbara Davis Center amino acids 257-556; 630-979), IA-2ic (amino acids 601-979), and IA-2 full-length (amino acids 1-979) in addition to islet cell antibody (ICA), glutamic acid decarboxylase, 65-kDa isoform, and insulin autoantibodies. We identified an autoantibody response reactive with the extracellular domain of IA-2 that is associated with very high risk of T1DM progression. Relatives with no detectable autoantibodies against ICA512bdc (or IA-2ic) exhibited antibody responses against the IA-2 full-length peptide (log rank, P = 0.008). This effect was also observed in first-degree relatives who were positive for glutamic acid decarboxylase, 65-kDa isoform (log rank, P = 0.026) or at least two islet autoantibodies but were negative for ICA512bdc (log rank, P = 0.022). Competitive binding experiments and immunoprecipitation of the IA-2 extracellular domain (amino acid residues 26-577) further lend support for the presence of autoantibodies reactive with new antigenic determinants within the extracellular domain of IA-2. In summary, the addition of measurements of autoantibodies reactive with the IA-2 extracellular domain to assays geared to assess the progression of autoimmunity to clinical T1DM may more accurately characterize this risk. This has considerable implications not only for stratifying high diabetes risk but also facilitating the search for pathogenic epitopes to enable the design of peptide-based immunotherapies that may prevent the progression to overt T1DM at its preclinical stages.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Imunidade Humoral/imunologia , Adolescente , Adulto , Idoso , Autoanticorpos/imunologia , Autoantígenos/genética , Autoantígenos/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Imunoprecipitação , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Adulto Jovem
12.
Mt Sinai J Med ; 75(4): 314-27, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18729178

RESUMO

Type 1 diabetes is one of the most well-characterized autoimmune diseases. Type 1 diabetes compromises an individual's insulin production through the autoimmune destruction of pancreatic beta-cells. Although much is understood about the mechanisms of this disease, multiple potential contributing factors are thought to play distinct parts in triggering type 1 diabetes. The immunological diagnosis of type 1 diabetes relies primarily on the detection of autoantibodies against islet antigens in the serum of type 1 diabetes mellitus patients. Genetic analyses of type 1 diabetes have linked human leukocyte antigen, specifically class II alleles, to susceptibility to disease onset. Environmental catalysts include various possible factors, such as viral infections, although the evidence linking infections with type 1 diabetes remains inconclusive. Imbalances within the immune system's system of checks and balances may promote immune activation, while undermining immune regulation. A lack of proper regulation and overactive pathogenic responses provide a framework for the development of autoimmune abnormalities. Type 1 diabetes is a predictable and potentially treatable disease that still requires much research to fully understand and pinpoint the exact triggering events leading to autoimmune activation. In silico research can aid the comprehension of the etiology of complex disease pathways, including Type I diabetes, in order to and help predict the outcome of therapeutic strategies aimed at preserving beta-cell function.


Assuntos
Diabetes Mellitus Tipo 1/genética , Imunidade Ativa/imunologia , Imunidade Inata/imunologia , Autoantígenos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Meio Ambiente , Epitopos , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunidade Ativa/fisiologia , Imunidade Inata/fisiologia , Fatores de Risco , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...