Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 15752, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361682

RESUMO

Acute myeloid leukaemia (AML) is an aggressive cancer with 50-75% of patients relapsing even after successful chemotherapy. The role of the bone marrow microenvironment (BMM) in protecting AML cells from chemotherapeutics and causing consequent relapse is increasingly recognised. However the role that the anti-apoptotic Bcl-2 proteins play as effectors of BMM-mediated drug resistance are less understood. Here we show that bone marrow mesenchymal stromal cells (BMSC) provide resistance to AML cells against BH3-mimetics, cytarabine and daunorubicin, but this is not mediated by Bcl-2 and/or Bcl-XL as previously thought. Instead, BMSCs induced Mcl-1 expression over Bcl-2 and/or Bcl-XL in AML cells and inhibition of Mcl-1 with a small-molecule inhibitor, A1210477, or repressing its expression with the CDC7/CDK9 dual-inhibitor, PHA-767491 restored sensitivity to BH3-mimetics. Furthermore, combined inhibition of Bcl-2/Bcl-XL and Mcl-1 could revert BMSC-mediated resistance against cytarabine + daunorubicin. Importantly, the CD34+/CD38- leukemic stem cell-encompassing population was equally sensitive to the combination of PHA-767491 and ABT-737. These results indicate that Bcl-2/Bcl-XL and Mcl-1 act in a redundant fashion as effectors of BMM-mediated AML drug resistance and highlight the potential of Mcl-1-repression to revert BMM-mediated drug resistance in the leukemic stem cell population, thus, prevent disease relapse and ultimately improve patient survival.


Assuntos
Medula Óssea/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Piperidonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirróis/farmacologia , Antígenos CD/metabolismo , Compostos de Bifenilo/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Sulfonamidas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Proteína bcl-X/metabolismo
2.
Med Oncol ; 32(2): 452, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25579165

RESUMO

The majority of chronic myeloid leukaemia (CML) patients express either e13a2 or e14a2 BCR-ABL1 transcripts. Variant fusion genes can arise, usually due to alternative splicing of either BCR or ABL1 exons, with molecular monitoring by quantitative PCR (qPCR) in response to tyrosine kinase inhibitor therapy rarely reported in such cases. A case of CML is described in which an e13a3 BCR-ABL1 fusion was characterised. A qPCR methodology was developed and applied prospectively to demonstrate a favourable molecular response to imatinib treatment. This case serves to highlight the requirement for molecular monitoring of those CML patients harbouring the e13a3 and other variant BCR-ABL1 transcripts.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Idoso , Sequência de Bases , Humanos , Mesilato de Imatinib , Masculino , Reação em Cadeia da Polimerase em Tempo Real
3.
Case Rep Hematol ; 2013: 729327, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970983

RESUMO

Mutations of MPL are present in a significant proportion of patients with the myeloproliferative neoplasms (MPN), primary myelofibrosis (PMF), and essential thrombocythaemia (ET). The most frequent of these mutations, W515L and W515K, occur in exon 10 of MPL, which encodes the receptor for thrombopoietin. Another exon 10 mutation, MPL S505N, has been shown to be a founder mutation in several pedigrees with familial thrombocythaemia where it is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Rare cases of sporadic, nonfamilial, MPL S505N MPN have been documented, but the presenting laboratory and clinical features have not been described in detail. The diagnosis and clinical course of a case of MPL S505N-positive MPN are presented with diagnostic features and treatment response resembling typical ET but with evidence of increasing bone marrow fibrosis. Further MPN cases possessing this genotype require reporting in order to ascertain whether any particular morphological or clinical features, if present, determine clinical course and aid the refinement of therapeutic options.

4.
Cancers (Basel) ; 3(1): 1329-50, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24212664

RESUMO

Acute myeloid leukemia (AML) is an aggressive stem cell malignancy that is difficult to treat. There are limitations to the current treatment regimes especially after disease relapse, and therefore new therapeutic agents are urgently required which can overcome drug resistance whilst avoiding unnecessary toxicity. Among newer targeted agents, both tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and proteasome inhibitors show particular promise. In this report we show that a combination of the proteasome inhibitor bortezomib and TRAIL is effective against AML cell lines, in particular, AML cell lines displaying myelomonocytic/monocytic phenotype (M4/M5 AML based on FAB classification), which account for 20-30% of AML cases. We show that the underlying mechanism of sensitization is at least in part due to bortezomib mediated downregulation of c-FLIP and XIAP, which is likely to be regulated by NF-κB. Blockage of NF-κB activation with BMS-345541 equally sensitized myelomonocytic AML cell lines and primary AML blasts to TRAIL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...