Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 479(5): 641-659, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35212355

RESUMO

The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1-1 and W1-7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1-1 and W1-7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1-1 and W1-7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Núcleo Celular/genética , Proteínas de Ligação a DNA , Fatores de Transcrição GATA , Hordeum/genética , Folhas de Planta/genética , Fatores de Transcrição
2.
Front Plant Sci ; 11: 169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184796

RESUMO

Potato production is often constrained by abiotic stresses such as drought and high temperatures which are often present in combination. In the present work, we aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by comparative analysis of tolerant and susceptible cultivars. Physiological data indicated that the cultivars Desiree and Unica were stress tolerant while Agria and Russett Burbank were stress susceptible. Abiotic stress caused a greater reduction of photosynthetic carbon assimilation in the susceptible cultivars which was associated with a lower leaf transpiration rate. Oxidative stress, as estimated by the accumulation of malondialdehyde was not induced by stress treatments in any of the genotypes with the exception of drought stress in Russett Burbank. Stress treatment resulted in increases in ascorbate peroxidase activity in all cultivars except Agria which increased catalase activity in response to stress. Transcript profiling highlighted a decrease in the abundance of transcripts encoding proteins associated with PSII light harvesting complex in stress tolerant cultivars. Furthermore, stress tolerant cultivars accumulated fewer transcripts encoding a type-1 metacaspase implicated in programmed cell death. Stress tolerant cultivars exhibited stronger expression of genes associated with plant growth and development, hormone metabolism and primary and secondary metabolism than stress susceptible cultivars. Metabolite profiling revealed accumulation of proline in all genotypes following drought stress that was partially suppressed in combined heat and drought. On the contrary, the sugar alcohols inositol and mannitol were strongly accumulated under heat and combined heat and drought stress while galactinol was most strongly accumulated under drought. Combined heat and drought also resulted in the accumulation of Valine, isoleucine, and lysine in all genotypes. These data indicate that single and multiple abiotic stress tolerance in potato is associated with a maintenance of CO2 assimilation and protection of PSII by a reduction of light harvesting capacity. The data further suggests that stress tolerant cultivars suppress cell death and maintain growth and development via fine tuning of hormone signaling, and primary and secondary metabolism. This study highlights potential targets for the development of stress tolerant potato cultivars.

3.
Methods Mol Biol ; 1900: 181-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460566

RESUMO

Microarrays remain an extremely robust and cost-efficient technology for transcriptome analysis. A custom Agilent microarray has been designed from the predicted gene transcripts of the barley genome reference. Here, we describe total RNA extraction, fluorescent labeling, hybridization, and image analysis of barley arrays. Quality control measures are detailed, along with recommendations for downstream data analysis.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Dados , Corantes Fluorescentes/metabolismo , Hibridização de Ácido Nucleico , Controle de Qualidade , RNA de Plantas/isolamento & purificação , Coloração e Rotulagem
4.
Methods Mol Biol ; 1900: 283-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460572

RESUMO

Exome capture is a reduced representation approach that selectively captures sequence from only the gene-bearing regions of a genome. It is based on probes targeted at these regions and, compared with whole genome shotgun sequencing, leads to a significant reduction in cost and data processing effort while still providing insights into the most relevant part of a genome. An exome capture array for barley was released in 2013 and this has opened the door to numerous studies that have put this technology to good use. In this chapter we detail the laboratory protocols required for enrichment and sequencing, and provide detailed step-by-step instructions for the bioinformatics analysis of the resulting data.


Assuntos
Exoma/genética , Variação Genética , Hordeum/genética , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Análise de Dados , Biblioteca Gênica , Genoma de Planta
5.
Planta ; 247(6): 1393, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29725816

RESUMO

The article A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature, written by Almudena Trapero-Mozos, Laurence J. M. Ducreux, Craita E. Bita, Wayne Morris, Cosima Wiese, Jenny A. Morris, Christy Paterson, Peter E. Hedley, Robert D. Hancock, and Mark Taylor, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 8 March 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 30 April 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.The â€‹original â€‹article â€‹has â€‹been â€‹corrected.

6.
Planta ; 247(6): 1377-1392, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520461

RESUMO

MAIN CONCLUSION: A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light. Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C.


Assuntos
Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiologia , Termotolerância , Parede Celular/metabolismo , Montagem e Desmontagem da Cromatina , Eletrólitos/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genótipo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/efeitos da radiação , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Metabolômica , Oxirredução , Fenótipo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação , Termotolerância/genética , Termotolerância/efeitos da radiação
7.
Plant Physiol ; 175(1): 259-271, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743764

RESUMO

The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-ß-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation.


Assuntos
Afídeos/fisiologia , Ascorbato Oxidase/metabolismo , Herbivoria , Nicotiana/enzimologia , Folhas de Planta/enzimologia , Aminoácidos/metabolismo , Animais , Ascorbato Oxidase/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Cucurbita/genética , Fertilidade , Oxirredução , Plantas Geneticamente Modificadas/enzimologia , Nicotiana/genética , Transcriptoma
8.
PeerJ ; 4: e1654, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870612

RESUMO

Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).

9.
PLoS Pathog ; 11(5): e1004918, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25993686

RESUMO

Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants.


Assuntos
Afídeos/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Cinética , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ninfa/crescimento & desenvolvimento , Imunidade Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Especificidade da Espécie
10.
Plant Sci ; 234: 27-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804807

RESUMO

Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.


Assuntos
Carotenoides/metabolismo , Solanum tuberosum/genética , Carotenoides/química , Meio Ambiente , Patrimônio Genético , Engenharia Metabólica , Metaboloma , Tubérculos/química , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Transcriptoma , Transgenes , Xantofilas/química , Xantofilas/metabolismo
11.
Theor Appl Genet ; 127(9): 1917-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965888

RESUMO

KEY MESSAGE: Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding ß-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.


Assuntos
Carotenoides/química , Tubérculos/química , Locos de Características Quantitativas , Solanum tuberosum/genética , Transcriptoma , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Oxigenases de Função Mista/genética , Solanum tuberosum/química
12.
Plant Cell Environ ; 37(2): 439-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23889235

RESUMO

Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.


Assuntos
Resposta ao Choque Térmico , Solanum tuberosum/metabolismo , Temperatura , Processamento Alternativo , Carbono/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxirredução , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiologia
13.
Plant Cell Environ ; 37(6): 1351-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24236539

RESUMO

Recent advances have defined some of the components of photoperiodic signalling that lead to tuberization in potato including orthologues of FLOWERING LOCUS T (StSP6A) and CYCLING DOF FACTOR (StCDF1). The aim of the current study is to investigate the molecular basis of permissive tuber initiation under long days in Solanum tuberosum Neo-Tuberosum by comparative analysis with an obligate short-day S. tuberosum ssp. Andigena accession. We show that the Neo-Tuberosum accession, but not the Andigena, contains alleles that encode StCDF1 proteins modified in the C-terminal region, likely to evade long day inhibition of StSP6A expression. We also identify an allele of StSP6A from the Neo-Tuberosum accession, absent in the Andigena, which is expressed under long days. Other leaf transcripts and metabolites that show different abundances in tuberizing and non-tuberizing samples were identified adding detail to tuberization-associated processes. Overall, the data presented in this study highlight the subtle interplay between components of the clock-CONSTANS-StSP6A axis which collectively may interact to fine-tune the timing of tuberization.


Assuntos
Fotoperíodo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Sequência de Aminoácidos , Genótipo , Metaboloma , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Polimorfismo Genético , Alinhamento de Sequência , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento
14.
Genome Biol ; 14(6): R63, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799990

RESUMO

BACKGROUND: Plant-microbe interactions feature complex signal interplay between pathogens and their hosts. Phytophthora species comprise a destructive group of fungus-like plant pathogens, collectively affecting a wide range of plants important to agriculture and natural ecosystems. Despite the availability of genome sequences of both hosts and microbes, little is known about the signal interplay between them during infection. In particular, accurate descriptions of coordinate relationships between host and microbe transcriptional programs are lacking. RESULTS: Here, we explore the molecular interaction between the hemi-biotrophic broad host range pathogen Phytophthora capsici and tomato. Infection assays and use of a composite microarray allowed us to unveil distinct changes in both P. capsici and tomato transcriptomes, associated with biotrophy and the subsequent switch to necrotrophy. These included two distinct transcriptional changes associated with early infection and the biotrophy to necrotrophy transition that may contribute to infection and completion of the P. capsici lifecycle CONCLUSIONS: Our results suggest dynamic but highly regulated transcriptional programming in both host and pathogen that underpin P. capsici disease and hemi-biotrophy. Dynamic expression changes of both effector-coding genes and host factors involved in immunity, suggests modulation of host immune signaling by both host and pathogen. With new unprecedented detail on transcriptional reprogramming, we can now explore the coordinate relationships that drive host-microbe interactions and the basic processes that underpin pathogen lifestyles. Deliberate alteration of lifestyle-associated transcriptional changes may allow prevention or perhaps disruption of hemi-biotrophic disease cycles and limit damage caused by epidemics.


Assuntos
Interações Hospedeiro-Patógeno/genética , Phytophthora/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
PLoS One ; 8(3): e59517, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536880

RESUMO

Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.


Assuntos
Família Multigênica , Phytophthora/genética , Phytophthora/metabolismo , Sequência de Aminoácidos , Morte Celular , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Genoma , Anotação de Sequência Molecular , Dados de Sequência Molecular , Oomicetos/genética , Oomicetos/metabolismo , Fenótipo , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Matrizes de Pontuação de Posição Específica , Domínios e Motivos de Interação entre Proteínas , Nicotiana/parasitologia , Virulência/genética
16.
Antioxid Redox Signal ; 18(16): 2091-105, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23343093

RESUMO

AIMS: Aphids, like other insects, are probably unable to synthesize vitamin C (ascorbic acid), which is therefore an essential dietary nutrient that has to be obtained from the host plant. Plant responses to aphids involve hormones such as salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), but hormone/redox interactions remain poorly characterized. We therefore investigated hormone/redox signaling in the response of Arabidopsis thaliana to infestation by the aphid Myzus persicae, focusing on the interactions between ascorbic acid and ABA, together with the influence of altered ascorbate and ABA signaling on the SA- and JA-dependent pathways. RESULTS: Whole-genome microarray analysis revealed highly dynamic transcriptional responses to aphid infestation with extensive differences between transcript profiles of infested and systemic leaves, revealing aphid-dependent effects on the suites of transcripts involved in the redox, SA, and ABA responses. Central roles for ascorbate, ABA-insensitive 4 (ABI4), and oxidative signal-inducible 1 in plant resistance to aphids were demonstrated by altered fecundity on respective mutants. However, ABA had a negative effect on aphid resistance, as did ABI4 or redox-responsive transcription factor 1. The decrease in aphid fecundity observed in mutants defective in ascorbate accumulation (vtc2) was absent from abi4vtc2 double mutants that are also deficient in ABA signaling (abi4). Aphid-dependent transcriptome responses reveal a role for ascorbate-regulated receptor-like kinases in plant defenses against aphids. INNOVATION: Vitamin C deficiency enhances plant resistance to aphids through redox signaling pathways rather than dietary requirements. CONCLUSION: ABI4 is a linchpin of redox regulation of the innate immune response to aphids.


Assuntos
Ácido Abscísico/metabolismo , Afídeos/fisiologia , Arabidopsis/parasitologia , Ácido Ascórbico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/genética , Genes de Plantas , Interações Hospedeiro-Parasita , Transcriptoma
17.
Mol Plant Microbe Interact ; 26(3): 356-66, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23113713

RESUMO

Plant cell wall-degrading enzymes (PCWDE) are key virulence determinants in the pathogenesis of the potato pathogen Pectobacterium atrosepticum. In this study, we report the impact on virulence of a transposon insertion mutation in the metJ gene that codes for the repressor of the methionine biosynthesis regulon. In a mutant strain defective for the small regulatory RNA rsmB, PCWDE are not produced and virulence in potato tubers is almost totally abolished. However, when the metJ gene is disrupted in this background, the rsmB(-) phenotype is suppressed and virulence and PCWDE production are restored. Additionally, when metJ is disrupted, production of the quorum-sensing signal, N-(3-oxohexanoyl)-homoserine lactone, is increased. The metJ mutant strains showed pleiotropic transcriptional impacts affecting approximately a quarter of the genome. Genes involved in methionine biosynthesis were most highly upregulated but many virulence-associated transcripts were also upregulated. This is the first report of the impact of the MetJ repressor on virulence in bacteria.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Pectobacterium/genética , Percepção de Quorum/genética , Proteínas Repressoras/genética , Solanum tuberosum/microbiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Metionina/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Pectobacterium/enzimologia , Pectobacterium/patogenicidade , Pectobacterium/fisiologia , Peptídeo Hidrolases/metabolismo , Fenótipo , Tubérculos/microbiologia , Polissacarídeo-Liases/metabolismo , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Virulência
18.
Mol Plant Pathol ; 13(9): 1120-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22863280

RESUMO

The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Estágios do Ciclo de Vida/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/genética , Animais , Feminino , Regulação da Expressão Gênica , Genes de Helmintos/genética , Genótipo , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum tuberosum/citologia
19.
Mol Plant Pathol ; 13(2): 160-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21831138

RESUMO

The bacterial pathogen Erwinia amylovora is the causal agent of fire blight, an economically significant disease of apple and pear. Disease initiation by E. amylovora requires the translocation of effector proteins into host cells via the hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS). The alternative sigma factor HrpL positively regulates the transcription of structural and translocated components of the T3SS via hrp promoter elements. To characterize genome-wide HrpL-dependent gene expression in E. amylovora Ea1189, wild-type and Ea1189ΔhrpL strains were cultured in hrp-inducing minimal medium, and total RNA was compared using a custom microarray designed to represent the annotated genes of E. amylovora ATCC 49946. The results revealed 24 genes differentially regulated in Ea1189ΔhrpL relative to Ea1189 with fold-change expression ratios greater than 1.5; of these, 19 genes exhibited decreased transcript abundance and five genes showed increased transcript abundance relative to Ea1189. To expand our understanding of the HrpL regulon and to elucidate direct versus indirect HrpL-mediated effects on gene expression, the genome of E. amylovora ATCC 49946 was examined in silico using a hidden Markov model assembled from known Erwinia spp. hrp promoters. This technique identified 15 putative type III novel hrp promoters, seven of which were validated with quantitative polymerase chain reaction based on expression analyses. It was found that HrpL-regulated genes encode all known components of the hrp T3SS, as well as five putative type III effectors. Eight genes displayed apparent indirect HrpL regulation, suggesting that the HrpL regulon is connected to downstream signalling networks. The construction of deletion mutants of three novel HrpL-regulated genes resulted in the identification of additional virulence factors as well as mutants displaying abnormal motility and biofilm phenotypes.


Assuntos
Proteínas de Bactérias/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidade , Doenças das Plantas/microbiologia , Regulon/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Composição de Bases/genética , Sequência de Bases , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Cadeias de Markov , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Regiões Promotoras Genéticas/genética , Pyrus/crescimento & desenvolvimento , Pyrus/microbiologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
20.
BMC Plant Biol ; 11: 147, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035129

RESUMO

BACKGROUND: Deep-level second generation sequencing (2GS) technologies are now being applied to non-model species as a viable and favourable alternative to Sanger sequencing. Large-scale SNP discovery was undertaken in blackcurrant (Ribes nigrum L.) using transcriptome-based 2GS 454 sequencing on the parental genotypes of a reference mapping population, to generate large numbers of novel markers for the construction of a high-density linkage map. RESULTS: Over 700,000 reads were produced, from which a total of 7,000 SNPs were found. A subset of polymorphic SNPs was selected to develop a 384-SNP OPA assay using the Illumina BeadXpress platform. Additionally, the data enabled identification of 3,000 novel EST-SSRs. The selected SNPs and SSRs were validated across diverse Ribes germplasm, including mapping populations and other selected Ribes species.SNP-based maps were developed from two blackcurrant mapping populations, incorporating 48% and 27% of assayed SNPs respectively. A relatively high proportion of visually monomorphic SNPs were investigated further by quantitative trait mapping of theta score outputs from BeadStudio analysis, and this enabled additional SNPs to be placed on the two maps. CONCLUSIONS: The use of 2GS technology for the development of markers is superior to previously described methods, in both numbers of markers and biological informativeness of those markers. Whilst the numbers of reads and assembled contigs were comparable to similar sized studies of other non-model species, here a high proportion of novel genes were discovered across a wide range of putative function and localisation. The potential utility of markers developed using the 2GS approach in downstream breeding applications is discussed.


Assuntos
Mapeamento Cromossômico/métodos , Marcadores Genéticos , Ribes/genética , Transcriptoma , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Ligação Genética , Genótipo , Técnicas de Genotipagem , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA