Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 188: 107892, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37524217

RESUMO

As genomic data proliferates, the prevalence of post-speciation gene flow is making species boundaries and relationships increasingly ambiguous. Although current approaches inferring fully bifurcating phylogenies based on concatenated datasets provide simple and robust answers to many species relationships, they may be inaccurate because the models ignore inter-specific gene flow and incomplete lineage sorting. To examine the potential error resulting from ignoring gene flow, we generated both a RAD-seq and a 500 protein-coding loci highly multiplexed amplicon (HiMAP) dataset for a monophyletic group of 12 species defined as the Bactrocera dorsalis sensu lato clade. With some of the world's worst agricultural pests, the taxonomy of the B. dorsalis s.l. clade is important for trade and quarantines. However, taxonomic confusion confounds resolution due to intra- and interspecific phenotypic variation and convergence, mitochondrial introgression across half of the species, and viable hybrids. We compared the topological convergence of our datasets using concatenated phylogenetic and various multispecies coalescent approaches, some of which account for gene flow. All analyses agreed on species delimitation, but there was incongruence between species relationships. Under concatenation, both datasets suggest identical species relationships with mostly high statistical support. However, multispecies coalescent and multispecies network approaches suggest markedly different hypotheses and detected significant gene flow. We suggest that the network approaches are likely more accurate because gene flow violates the assumptions of the concatenated phylogenetic analyses, but the data-reductive requirements of network approaches resulted in reduced statistical support and could not unambiguously resolve gene flow directions. Our study highlights the importance of testing for gene flow, particularly with phylogenomic datasets, even when concatenated approaches receive high statistical support.


Assuntos
Fluxo Gênico , Genômica , Animais , Filogenia , Genoma , Insetos/genética
2.
Evol Appl ; 13(10): 2610-2629, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294012

RESUMO

The release of domestic organisms to the wild threatens biodiversity because the introduction of domestic genes through interbreeding can negatively impact wild conspecifics via outbreeding depression. In North America, farmed American mink (Neovison vison) frequently escape captivity, yet the impact of these events on functional genetic diversity of wild mink populations is unclear. We characterized domestic and wild mink in Ontario at 17 trinucleotide microsatellites located in functional genes thought to be associated with traits affected by domestication. We found low functional genetic diversity in both mink types, as only four of 17 genes were variable, yet allele frequencies varied widely between captive and wild populations. To determine whether allele frequencies of wild populations were affected by geographic location, we performed redundancy analysis and spatial analysis of principal components on three polymorphic loci (AR, ATN1 and IGF-1). We found evidence to suggest domestic release events are affecting the functional genetic diversity of wild mink, as sPCA showed clear distinctions between wild individuals near mink farms and those located in areas without mink farms. This is further substantiated through RDA, where spatial location was associated with genetic variation of AR, ATN1 and IGF1.

3.
Mov Ecol ; 5: 21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29043084

RESUMO

BACKGROUND: Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx (Lynx canadensis), American marten (Martes americana), fisher (Pekania pennanti), and southern flying squirrel (Glaucomys volans) to evaluate multi-species genetic connectivity across Ontario, Canada. RESULTS: We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. CONCLUSIONS: Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high current density appear to constrict gene flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...