Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 503(7476): 422-426, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24141947

RESUMO

Linear ubiquitin chains are important regulators of cellular signalling pathways that control innate immunity and inflammation through nuclear factor (NF)-κB activation and protection against tumour necrosis factor-α-induced apoptosis. They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multisubunit E3 ligase. RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or 'donor' ubiquitin. Here we report the crystal structure of the catalytic core of HOIP in its apo form and in complex with ubiquitin. The carboxy-terminal portion of HOIP adopts a novel fold that, together with a zinc-finger, forms a ubiquitin-binding platform that orients the acceptor ubiquitin and positions its α-amino group for nucleophilic attack on the E3∼ubiquitin thioester. The C-terminal tail of a second ubiquitin molecule is located in close proximity to the catalytic cysteine, providing a unique snapshot of the ubiquitin transfer complex containing both donor and acceptor ubiquitin. These interactions are required for activation of the NF-κB pathway in vivo, and they explain the determinants of linear ubiquitin chain specificity by LUBAC.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
2.
EMBO Rep ; 13(9): 840-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791023

RESUMO

The linear ubiquitin chain assembly complex (LUBAC) is a RING E3 ligase that regulates immune and inflammatory signalling pathways. Unlike classical RING E3 ligases, LUBAC determines the type of ubiquitin chain being formed, an activity normally associated with the E2 enzyme. We show that the RING-in-between-RING (RBR)-containing region of HOIP--the catalytic subunit of LUBAC--is sufficient to generate linear ubiquitin chains. However, this activity is inhibited by the N-terminal portion of the molecule, an inhibition that is released upon complex formation with HOIL-1L or SHARPIN. Furthermore, we demonstrate that HOIP transfers ubiquitin to the substrate through a thioester intermediate formed by a conserved cysteine in the RING2 domain, supporting the notion that RBR ligases act as RING/HECT hybrids.


Assuntos
Poliubiquitina/biossíntese , Ubiquitina-Proteína Ligases/química , Animais , Domínio Catalítico , Bovinos , Ésteres/química , Poliubiquitina/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Compostos de Sulfidrila/química
3.
Biochem J ; 421(2): 243-51, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19422324

RESUMO

The IKK [IkappaB (inhibitory kappaB) kinase] complex is a key regulatory component of NF-kappaB (nuclear factor kappaB) activation and is responsible for mediating the degradation of IkappaB, thereby allowing nuclear translocation of NF-kappaB and transcription of target genes. NEMO (NF-kappaB essential modulator), the regulatory subunit of the IKK complex, plays a pivotal role in this process by integrating upstream signals, in particular the recognition of polyubiquitin chains, and relaying these to the activation of IKKalpha and IKKbeta, the catalytic subunits of the IKK complex. The oligomeric state of NEMO is controversial and the mechanism by which it regulates activation of the IKK complex is poorly understood. Using a combination of hydrodynamic techniques we now show that apo-NEMO is a highly elongated, dimeric protein that is in weak equilibrium with a tetrameric assembly. Interaction with peptides derived from IKKbeta disrupts formation of the tetrameric NEMO complex, indicating that interaction with IKKalpha and IKKbeta and tetramerization are mutually exclusive. Furthermore, we show that NEMO binds to linear di-ubiquitin with a stoichiometry of one molecule of di-ubiquitin per NEMO dimer. This stoichiometry is preserved in a construct comprising the second coiled-coil region and the leucine zipper and in one that essentially spans the full-length protein. However, our data show that at high di-ubiquitin concentrations a second weaker binding site becomes apparent, implying that two different NEMO-di-ubiquitin complexes are formed during the IKK activation process. We propose that the role of these two complexes is to provide a threshold for activation, thereby ensuring sufficient specificity during NF-kappaB signalling.


Assuntos
Quinase I-kappa B/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Humanos , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Camundongos , Multimerização Proteica , Transdução de Sinais , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...