Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0171223, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943059

RESUMO

The COVID-19 pandemic demonstrated the poor ability of body temperature to reliably identify SARS-CoV-2-infected individuals, an observation that has been made before in the context of other infectious diseases. While acute infection does not always cause fever, it does reliably drive host transcriptional responses as the body responds at the site of infection. These transcriptional changes can occur both in cells that are directly harboring replicating pathogens and in cells elsewhere that receive a molecular signal that infection is occurring. Here, we identify a core set of approximately 70 human genes that are together upregulated in cultured human cells infected by a broad array of viral, bacterial, and fungal pathogens. We have named these "core response" genes. In theory, transcripts from these genes could serve as biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection. As such, we perform human studies to show that these infection-induced human transcripts can be measured in the saliva of people harboring different types of infections. The number of these transcripts in saliva can correctly classify infection status (whether a person harbors an infection) 91% of the time. Furthermore, in the case of SARS-CoV-2 specifically, the number of core response transcripts in saliva correctly identifies infectious individuals even when enrollees, themselves, are asymptomatic and do not know they are infected.IMPORTANCEThere are a variety of clinical and laboratory criteria available to clinicians in controlled healthcare settings to help them identify whether an infectious disease is present. However, in situations such as a new epidemic caused by an unknown infectious agent, in health screening contexts performed within communities and outside of healthcare facilities or in battlefield or potential biowarfare situations, this gets more difficult. Pathogen-agnostic methods for rapid screening and triage of large numbers of people for infection status are needed, in particular methods that might work on an easily accessible biospecimen like saliva. Here, we identify a small, core set of approximately 70 human genes whose transcripts serve as saliva-based biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection.

2.
mBio ; 14(2): e0016123, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36927083

RESUMO

Signal peptides are N-terminal peptides, generally less than 30 amino acids in length, that direct translocation of proteins into the endoplasmic reticulum and secretory pathway. The envelope glycoprotein (Env) of the nonprimate lentivirus feline immunodeficiency virus (FIV) contains the longest signal peptide of all eukaryotic, prokaryotic, and viral proteins (175 amino acids), yet the reason is unknown. Tetherin is a dual membrane-anchored host protein that inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved three antagonists: the small accessory proteins Vpu and Nef, and in the case of HIV-2, Env. Here, we identify the FIV Env signal peptide (Fsp) as the FIV tetherin antagonist. A short deletion in the central portion of Fsp had no effect on viral replication in the absence of tetherin, but severely impaired virion budding in its presence. Fsp is necessary and sufficient, acting as an autonomous accessory protein with the rest of Env dispensable. In contrast to primate lentivirus tetherin antagonists, its mechanism is to stringently block the incorporation of this restriction factor into viral particles rather than by degrading it or downregulating it from the plasma membrane. IMPORTANCE The study of species- and virus-specific differences in restriction factors and their antagonists has been central to deciphering the nature of these key host defenses. FIV is an AIDS-causing lentivirus that has achieved pandemic spread in the domestic cat. We now identify its tetherin antagonist as the signal sequence of the Envelope glycoprotein, thus identifying the fourth lentiviral anti-tetherin protein and the first new lentiviral accessory protein in decades. Fsp is necessary and sufficient and functions by stringently blocking particle incorporation of tetherin, which differs from the degradation or surface downregulation mechanisms used by primate lentiviruses. Fsp also is a novel example of signal peptide dual function, being both a restriction factor antagonist and a mediator of protein translocation into the endoplasmic reticulum.


Assuntos
Vírus da Imunodeficiência Felina , Lentivirus de Primatas , Animais , Gatos , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/metabolismo , Antígeno 2 do Estroma da Médula Óssea/genética , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Aminoácidos , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética
3.
Proc Natl Acad Sci U S A ; 119(32): e2203760119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867811

RESUMO

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.


Assuntos
Antivirais , COVID-19 , Interferons , SARS-CoV-2 , Anticorpos Neutralizantes , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , Humanos , Interferons/farmacologia , Interferons/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
4.
Nano Sel ; 3(2): 437-449, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541574

RESUMO

Antiviral strategies that target host systems needed for SARS-CoV-2 replication and pathogenesis may have therapeutic potential and help mitigate resistance development. Here, we evaluate nafamostat mesylate, a potent broad-spectrum serine protease inhibitor that blocks host protease activation of the viral spike protein. SARS-CoV-2 is used to infect human polarized mucociliated primary bronchiolar epithelia reconstituted with cells derived from healthy donors, smokers and subjects with chronic obstructive pulmonary disease. Nafamostat markedly inhibits apical shedding of SARS-CoV-2 from all donors (log10 reduction). We also observe, for the first-time, anti-inflammatory effects of nafamostat on airway epithelia independent of its antiviral effects, suggesting a dual therapeutic advantage in the treatment of COVID-19. Nafamostat also exhibits antiviral properties against the seasonal human coronaviruses 229E and NL6. These findings suggest therapeutic promise for nafamostat in treating SARS-CoV-2 and other human coronaviruses.

5.
bioRxiv ; 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33758840

RESUMO

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and four major variants of concern. Our data reveal increased interferon resistance in emerging SARS-CoV-2 variants, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.

6.
mBio ; 11(5)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934084

RESUMO

Bats are primary reservoirs for multiple lethal human viruses, such as Ebola, Nipah, Hendra, rabies, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and, most recently, SARS-CoV-2. The innate immune systems of these immensely abundant, anciently diverged mammals remain insufficiently characterized. While bat genomes contain many endogenous retroviral elements indicative of past exogenous infections, little is known about restrictions to extant retroviruses. Here, we describe a major postentry restriction in cells of the yinpterochiropteran bat Pteropus alecto Primate lentiviruses (HIV-1, SIVmac) were potently blocked at early life cycle steps, with up to 1,000-fold decreases in infectivity. The block was specific, because nonprimate lentiviruses such as equine infectious anemia virus and feline immunodeficiency virus were unimpaired, as were foamy retroviruses. Interspecies heterokaryons demonstrated a dominant block consistent with restriction of incoming viruses. Several features suggested potential TRIM5 (tripartite motif 5) or myxovirus resistance protein 2 (MX2) protein restriction, including postentry action, cyclosporine sensitivity, and reversal by capsid cyclophilin A (CypA) binding loop mutations. Viral nuclear import was significantly reduced, and this deficit was substantially rescued by cyclosporine treatment. However, saturation with HIV-1 virus-like particles did not relieve the restriction at all. P. alecto TRIM5 was inactive against HIV-1 although it blocked the gammaretrovirus N-tropic murine leukemia virus. Despite major divergence in a critical N-terminal motif required for human MX2 activity, P. alecto MX2 had anti-HIV activity. However, this did not quantitatively account for the restriction and was independent of and synergistic with an additional CypA-dependent restriction. These results reveal a novel, specific restriction to primate lentiviruses in the Pteropodidae and advance understanding of bat innate immunity.IMPORTANCE The COVID-19 pandemic suggests that bat innate immune systems are insufficiently characterized relative to the medical importance of these animals. Retroviruses, e.g., HIV-1, can be severe pathogens when they cross species barriers, and bat restrictions corresponding to retroviruses are comparatively unstudied. Here, we compared the abilities of retroviruses from three genera (Lentivirus, Gammaretrovirus, and Spumavirus) to infect cells of the large fruit-eating bat P. alecto and other mammals. We identified a major, specific postentry restriction to primate lentiviruses. HIV-1 and SIVmac are potently blocked at early life cycle steps, but nonprimate lentiviruses and foamy retroviruses are entirely unrestricted. Despite acting postentry and in a CypA-dependent manner with features reminiscent of antiretroviral factors from other mammals, this restriction was not saturable with virus-like particles and was independent of P. alecto TRIM5, TRIM21, TRIM22, TRIM34, and MX2. These results identify a novel restriction and highlight cyclophilin-capsid interactions as ancient species-specific determinants of retroviral infection.


Assuntos
Quirópteros/imunologia , Gammaretrovirus/imunologia , Imunidade Inata/imunologia , Lentivirus de Primatas/imunologia , Spumavirus/imunologia , Células 3T3 , Animais , Aotidae , Gatos , Linhagem Celular , Quirópteros/virologia , Ciclofilina A/metabolismo , Furões , Gammaretrovirus/crescimento & desenvolvimento , Células HEK293 , Humanos , Lentivirus de Primatas/crescimento & desenvolvimento , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Spumavirus/crescimento & desenvolvimento , Proteínas com Motivo Tripartido/metabolismo
7.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051266

RESUMO

The innate immune system is normally programmed for immediate but transient upregulation in response to invading pathogens, and interferon (IFN)-stimulated gene (ISG) activation is a central feature. In contrast, chronic innate immune system activation is typically associated with autoimmunity and a broad array of autoinflammatory diseases that include the interferonopathies. Here, we studied retroviral susceptibility in a transgenic mouse model with lifelong innate immune system hyperactivation. The mice transgenically express low levels of a picornaviral RNA-dependent RNA polymerase (RdRP), which synthesizes double-stranded RNAs that are sensed by melanoma differentiation-associated protein 5 (MDA5) to trigger constitutive upregulation of many ISGs. However, in striking counterpoint to the paradigm established by numerous human and murine examples of ISG hyperactivation, including constitutive MDA5 activation, they lack autoinflammatory sequelae. RdRP-transgenic mice (RdRP mice) resist infection and disease caused by several pathogenic RNA and DNA viruses. However, retroviruses are sensed through other mechanisms, persist in the host, and have distinctive replication and immunity-evading properties. We infected RdRP mice and wild-type (WT) mice with various doses of a pathogenic retrovirus (Friend virus) and assessed immune parameters and disease at 1, 4, and 8 weeks. Compared to WT mice, RdRP mice had significantly reduced splenomegaly, viral loads, and infection of multiple target cell types in the spleen and the bone marrow. During chronic infection, RdRP mice had 2.35 ± 0.66 log10 lower circulating viral RNA than WT. Protection required ongoing type I IFN signaling. The results show that the reconfigured RdRP mouse innate immune system substantially reduced retroviral replication, set point, and pathogenesis.IMPORTANCE Immune control of retroviruses is notoriously difficult, a fundamental problem that has been most clinically consequential with the HIV-1 pandemic. As humans expand further into previously uninhabited areas, the likelihood of new zoonotic retroviral exposures increases. The role of the innate immune system, including ISGs, in controlling retroviral infections is currently an area of intensive study. This work provides evidence that a primed innate immune system is an effective defense against retroviral pathogenesis, resulting in reduced viral replication and burden of disease outcomes. RdRP mice also had considerably lower Friend retrovirus (FV) viremia. The results could have implications for harnessing ISG responses to reduce transmission or control pathogenesis of human retroviral pathogens.


Assuntos
Helicase IFIH1 Induzida por Interferon/metabolismo , Picornaviridae/genética , RNA Polimerase Dependente de RNA/metabolismo , Animais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/biossíntese , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Picornaviridae/metabolismo , RNA Polimerase Dependente de RNA/genética , Infecções por Retroviridae/virologia , Carga Viral , Viremia , Replicação Viral
8.
Viruses ; 11(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615058

RESUMO

RNA viruses are a major source of emerging and re-emerging infectious diseases around the world. We developed a method to identify RNA viruses that is based on the fact that RNA viruses produce double-stranded RNA (dsRNA) while replicating. Purifying and sequencing dsRNA from the total RNA isolated from infected tissue allowed us to recover dsRNA virus sequences and replicated sequences from single-stranded RNA (ssRNA) viruses. We refer to this approach as dsRNA-Seq. By assembling dsRNA sequences into contigs we identified full length or partial RNA viral genomes of varying genome types infecting mammalian culture samples, identified a known viral disease agent in laboratory infected mice, and successfully detected naturally occurring RNA viral infections in reptiles. Here, we show that dsRNA-Seq is a preferable method for identifying viruses in organisms that don't have sequenced genomes and/or commercially available rRNA depletion reagents. In addition, a significant advantage of this method is the ability to identify replicated viral sequences of ssRNA viruses, which is useful for distinguishing infectious viral agents from potential noninfectious viral particles or contaminants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , RNA de Cadeia Dupla/isolamento & purificação , Animais , Chlorocebus aethiops , Genoma Viral , Camundongos , Vírus de RNA/isolamento & purificação , RNA Viral/isolamento & purificação , RNA-Seq , Células Vero , Vírion , Replicação Viral
9.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29769349

RESUMO

TREX1 has been reported to degrade cytosolic immune-stimulatory DNA, including viral DNA generated during HIV-1 infection; but the dynamic range of its capacity to suppress innate immune stimulation is unknown, and its full role in the viral life cycle remains unclear. A main purpose of our study was to determine how the intracellular level of TREX1 affects HIV-1 activation and avoidance of innate immunity. Using stable overexpression and CRISPR-mediated gene disruption, we engineered a range of TREX1 levels in human THP-1 monocytes. Increasing the level of TREX1 dramatically suppressed HIV-1 induction of interferon-stimulated genes (ISGs). Productive infection and integrated proviruses were equal or increased. Knocking out TREX1 impaired viral infectivity, increased early viral cDNA, and caused 10-fold or greater increases in HIV-1 ISG induction. Knockout of cyclic GMP-AMP synthase (cGAS) abrogated all ISG induction. Moreover, cGAS knockout produced no increase in single-cycle infection, establishing that HIV-1 DNA-triggered signaling is not rapid enough to impair the initial ISG-triggering infection cycle. Disruption of the HIV-1 capsid by PF74 also induced ISGs, and this was TREX1 level dependent, required reverse transcriptase catalysis, and was eliminated by cGAS gene knockout. Thus, the intracellular level of TREX1 pivotally modulates innate immune induction by HIV-1. Partial HIV-1 genomes are the TREX1 target and are sensed by cGAS. The nearly complete lack of innate immune induction despite equal or increased viral integration observed when the TREX1 protein level is experimentally elevated indicates that integration-competent genomes are shielded from cytosolic sensor-effectors during uncoating and transit to the nucleus.IMPORTANCE Much remains unknown about how TREX1 influences HIV-1 replication: whether it targets full-length viral DNA versus partial intermediates, how intracellular TREX1 protein levels correlate with ISG induction, and whether TREX1 digestion of cytoplasmic DNA and subsequent cGAS pathway activation affects both initial and subsequent cycles of infection. To answer these questions, we experimentally varied the intracellular level of TREX1 and showed that this strongly determines the innate immunogenicity of HIV-1. In addition, several lines of evidence, including time-of-addition experiments with drugs that impair reverse transcription or capsid integrity, showed that the pathogen-associated molecular patterns sensed after viral entry contain DNA, are TREX1 and cGAS substrates, and are derived from incomplete reverse transcriptase (RT) products. In contrast, the experiments demonstrate that full-length integration-competent viral DNA is immune to TREX1. Treatment approaches that reduce TREX1 levels or facilitate release of DNA intermediates may advantageously combine enhanced innate immunity with antiviral effects.


Assuntos
DNA Viral/imunologia , Exodesoxirribonucleases/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Transcrição Reversa , DNA Viral/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Monócitos/imunologia , Monócitos/virologia , Células THP-1
10.
PLoS Pathog ; 11(12): e1005311, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633895

RESUMO

For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.


Assuntos
Genes Virais/imunologia , Imunidade Inata/imunologia , RNA Polimerase Dependente de RNA/imunologia , Proteínas Virais/imunologia , Animais , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunidade Inata/genética , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Picornaviridae/genética , Picornaviridae/imunologia , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroses/imunologia , Viroses/prevenção & controle
11.
J Virol ; 88(17): 9704-17, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942577

RESUMO

UNLABELLED: HIV-1 utilizes the cellular protein LEDGF/p75 as a chromosome docking and integration cofactor. The LEDGF/p75 gene, PSIP1, is a potential therapeutic target because, like CCR5, depletion of LEDGF/p75 is tolerated well by human CD4+ T cells, and knockout mice have normal immune systems. RNA interference (RNAi) has been useful for studying LEDGF/p75, but the potent cofactor activity of small protein residua can be confounding. Here, in human cells with utility for HIV research (293T and Jurkat), we used transcription activator-like effector nucleases (TALENs) to completely eradicate all LEDGF/p75 expression. We performed two kinds of PSIP1 knockouts: whole-gene deletion and deletion of the integrase binding domain (IBD)-encoding exons. HIV-1 integration was inhibited, and spreading viral replication was severely impaired in PSIP1-/- Jurkat cells infected at high multiplicity. Furthermore, frameshifting the gene in the first coding exon with a single TALEN pair yielded trace LEDGF/p75 levels that were virologically active, affirming the cofactor's potency and the value of definitive gene or IBD exon segment deletion. Some recent studies have suggested that LEDGF/p75 may participate in HIV-1 assembly. However, we determined that assembly of infectious viral particles is normal in PSIP1-/- cells. The potency of an allosteric integrase inhibitor, ALLINI-2, for rendering produced virions noninfectious was also unaffected by total eradication of cellular LEDGF/p75. We conclude that HIV-1 particle assembly and the main ALLINI mechanism are LEDGF/p75 independent. The block to HIV-1 propagation in PSIP1-/- human CD4+ T cells raises the possibility of gene targeting PSIP1 combinatorially with CCR5 for HIV-1 cure. IMPORTANCE: LEDGF/p75 dependence is universally conserved in the retroviral genus Lentivirus. Once inside the nucleus, lentiviral preintegration complexes are thought to attach to the chromosome when integrase binds to LEDGF/p75. This tethering process is largely responsible for the 2-fold preference for integration into active genes, but the cofactor's full role in the lentiviral life cycle is not yet clear. Effective knockdowns are difficult because even trace residua of this tightly chromatin-bound protein can support integration cofactor function. Here, in experimentally useful human cell lines, we used TALENs to definitively eradicate LEDGF/p75 by deleting either all of PSIP1 or the exons that code for the integrase binding domain. HIV-1 replication was severely impaired in these PSIP1 knockout cells. Experiments in these cells also excluded a role for LEDGF/p75 in HIV-1 assembly and showed that the main ALLINI mechanism is LEDGF/p75 independent. Site-specific gene targeting of PSIP1 may have therapeutic potential for HIV-1 disease.


Assuntos
Técnicas de Inativação de Genes , Integrase de HIV/metabolismo , HIV-1/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Integração Viral , Replicação Viral , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/deficiência , Montagem de Vírus
12.
PLoS Pathog ; 10(2): e1003969, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586169

RESUMO

The large nucleoporin Nup358/RanBP2 forms eight filaments that project from the nuclear pore into the cytoplasm where they function as docking platforms for nucleocytoplasmic transport receptors. RNAi screens have implicated Nup358 in the HIV-1 life cycle. The 164 C-terminal amino acids of this 3,224 amino acid protein are a cyclophilin homology domain (Nup358Cyp), which has potential to bind the HIV-1 capsid and regulate viral progress to integration. Here we examined the virological role of Nup358 in conditional knockout mouse cells and in RNAi-depleted human CD4⁺ T cells. Cre-mediated gene knockout was toxic and diminished HIV-1 infectivity. However, cellular health and HIV-1 susceptibility were coordinately preserved if, prior to gene inactivation, a transposon was used to express all of Nup358 or only the N-terminal 1340 amino acids that contain three FG repeats and a Ran-binding domain. HIV-1, but not N74D capsid-mutant HIV-1, was markedly sensitive to TNPO3 depletion, but they infected 1-1340 segment-complemented Nup358 knockout cells equivalently. Human and mouse CypA both rescued HIV-1 in CypA gene⁻/⁻ Jurkat cells and TRIM-Nup358Cyp fusions derived from each species were equally antiviral; each also inhibited both WT and N74D virus. In the human CD4⁺T cell line SupT1, abrupt Nup358 depletion reduced viral replication but stable Nup358-depleted cells replicated HIV-1 normally. Thus, human CD4⁺ T cells can accommodate to loss of Nup358 and preserve HIV-1 susceptibility. Experiments with cylosporine, viruses with capsids that do not bind cyclophilins, and growth arrest did not uncover viral dependency on the C-terminal domains of Nup358. Our data reinforce the virological importance of TNPO3 and show that Nup358 supports nuclear transport functions important for cellular homeostasis and for HIV-1 nuclear import. However, the results do not suggest direct roles for the Nup358 cyclophilin or SUMO E3 ligase domains in engaging the HIV-1 capsid prior to nuclear translocation.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/metabolismo , HIV-1/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Ciclofilinas/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Interferência de RNA
13.
J Virol ; 88(6): 3255-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390322

RESUMO

UNLABELLED: BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. IMPORTANCE: HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is also its Env protein, but the mechanism is distinctive. Unlike other tetherin antagonists, FIV Env cannot act in trans to rescue vpu-deficient HIV-1. It must be incorporated specifically into FIV virions to be active. Also unlike other retroviral antagonists, but similar to Ebola virus Env, it does not act by downregulating or degrading tetherin. FIV Env might exclude tetherin locally or direct assembly to tetherin-negative membrane domains. Other distinctive features are apparent, including evidence that this virus evolved an equilibrium in which tetherin is both restriction factor and cofactor, as FIV requires tetherin for optimal particle release.


Assuntos
Antígenos CD/metabolismo , Doenças do Gato/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Infecções por Lentivirus/veterinária , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Doenças do Gato/genética , Doenças do Gato/virologia , Gatos , Cães , Vírus da Imunodeficiência Felina/química , Vírus da Imunodeficiência Felina/genética , Infecções por Lentivirus/genética , Infecções por Lentivirus/metabolismo , Infecções por Lentivirus/virologia , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Vírion/genética
14.
PLoS Pathog ; 5(7): e1000522, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19609362

RESUMO

LEDGF/p75 can tether over-expressed lentiviral integrase proteins to chromatin but how this underlies its integration cofactor role for these retroviruses is unclear. While a single integrase binding domain (IBD) binds integrase, a complex N-terminal domain ensemble (NDE) interacts with unknown chromatin ligands. Whether integration requires chromatin tethering per se, specific NDE-chromatin ligand interactions or other emergent properties of LEDGF/p75 has been elusive. Here we replaced the NDE with strongly divergent chromatin-binding modules. The chimeras rescued integrase tethering and HIV-1 integration in LEDGF/p75-deficient cells. Furthermore, chromatin ligands could reside inside or outside the nucleosome core, and could be protein or DNA. Remarkably, a short Kaposi's sarcoma virus peptide that binds the histone 2A/B dimer converted GFP-IBD from an integration blocker to an integration cofactor that rescues over two logs of infectivity. NDE mutants were corroborative. Chromatin tethering per se is a basic HIV-1 requirement and this rather than engagement of particular chromatin ligands is important for the LEDGF/p75 cofactor mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos Virais/metabolismo , Antivirais/metabolismo , Sequência de Bases , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde , Integrase de HIV/metabolismo , HIV-1/fisiologia , Histonas/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...