Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
JHEP Rep ; 6(5): 101023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38681862

RESUMO

Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.

2.
J Hand Surg Am ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043032

RESUMO

PURPOSE: Scapholunate ligaments (SLLs) play a well-established role in maintaining carpal alignment and kinematics, and are innervated with sensory mechanoreceptors located within the ligaments. They are involved in the afferent arc of dynamic wrist stability. The aim of this study was to describe the changes in these mechanoreceptor populations in injured SLLs. METHODS: Injured SLLs were collected from human wrists at the time of SLL reconstruction or limited wrist fusion, where the ligament remnants would otherwise be discarded. These specimens were formalin-fixed and paraffin-embedded for immunohistochemical analysis to identify mechanoreceptors, which were then classified by type and location within the ligament. RESULTS: A total of 15 ligaments were collected, with the interval from injury ranging from 39 days-20 years. Eleven ligaments were collected less than one year after injury, and four ligaments were collected two years or more after injury. A total of 66 mechanoreceptors were identified, with 50 mechanoreceptors identified in nine of the 11 specimens collected less than one year after injury. In this group, 54% of the mechanoreceptors resided in the volar subunit, 20% in the dorsal subunit, and 26% in the proximal subunit. Two of the four specimens collected two years or later after injury contained mechanoreceptors, all of which were located in the dorsal subunit. Increasing time from injury demonstrated a decline in mechanoreceptor numbers within the volar subunit. CONCLUSIONS: Mechanoreceptors were consistently located in the SLL, particularly in the volar subunit of specimens collected less than one year after injury. CLINICAL RELEVANCE: Ligament reconstruction techniques aim to primarily reconstitute the biomechanical function of the disrupted SLL; however, re-establishing the afferent proprioceptive capacity of the SLL may be a secondary objective. This suggests the need to consider the reconstruction of its volar subunit particularly in those managed within one year of injury.

3.
J Tissue Eng ; 13: 20417314221140979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600999

RESUMO

Due to a relative paucity of studies on human lymphatic assembly in vitro and subsequent in vivo transplantation, capillary formation and survival of primary human lymphatic (hLEC) and blood endothelial cells (hBEC) ± primary human vascular smooth muscle cells (hvSMC) were evaluated and compared in vitro and in vivo. hLEC ± hvSMC or hBEC ± hvSMC were seeded in a 3D porous scaffold in vitro, and capillary percent vascular volume (PVV) and vascular density (VD)/mm2 assessed. Scaffolds were also transplanted into a sub-cutaneous rat wound with morphology/morphometry assessment. Initially hBEC formed a larger vessel network in vitro than hLEC, with interconnected capillaries evident at 2 days. Interconnected lymphatic capillaries were slower (3 days) to assemble. hLEC capillaries demonstrated a significant overall increase in PVV (p = 0.0083) and VD (p = 0.0039) in vitro when co-cultured with hvSMC. A similar increase did not occur for hBEC + hvSMC in vitro, but hBEC + hvSMC in vivo significantly increased PVV (p = 0.0035) and VD (p = 0.0087). Morphology/morphometry established that hLEC vessels maintained distinct cell markers, and demonstrated significantly increased individual vessel and network size, and longer survival than hBEC capillaries in vivo, and established inosculation with rat lymphatics, with evidence of lymphatic function. The porous polyurethane scaffold provided advantages to capillary network formation due to its large (300-600 µm diameter) interconnected pores, and sufficient stability to ensure successful surgical transplantation in vivo. Given their successful survival and function in vivo within the porous scaffold, in vitro assembled hLEC networks using this method are potentially applicable to clinical scenarios requiring replacement of dysfunctional or absent lymphatic networks.

4.
ANZ J Surg ; 91(7-8): 1428-1434, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33656239

RESUMO

BACKGROUND: Plastic and Reconstructive Surgery (PRS) can trace its origins as far back as 3000 BC. Despite this, it remained a relatively rare and unestablished branch of surgery until the devastating injuries of the World Wars necessitated reconstruction. Returning wartime surgeons used the skills they had learned on the battlefield to continue PRS in Australia and New Zealand. This article examines the significant contributions of Australian and New Zealand surgeons to the founding of PRS as a global specialty and provides an account of the strenuous dedicated competition that led to the development of microsurgery and advances in reconstruction. METHODS: A comprehensive review of medical, medical humanities, and history databases (PubMed; MEDLINE; Web of Knowledge; Anthropology; Encyclopaedia of ancient history) and non-digital printed texts was conducted using multiple search terms and filters including Reconstruction; Plastic Surgery; Burns; Flaps; and Microsurgery). The search was restricted to publications that focused on the period between 1818 CE to current. RESULTS: Significant contributions of surgeons from the Antipodes occurred during several periods including the Industrial era, World Wars, Post-war and in the modern age. CONCLUSIONS: Stirred by their wartime experience, surgeons from Australia and New Zealand laid the foundations of the global success of Plastic Surgery in the modern age and helped establish it as a specialty in its own right.


Assuntos
Procedimentos de Cirurgia Plástica , Cirurgia Plástica , Austrália , Humanos , Microcirurgia , Nova Zelândia
5.
Plast Reconstr Surg Glob Open ; 8(3): e2706, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32537359

RESUMO

Cancer patients often require radiotherapy (RTx) to enhance their survival. Unfortunately, RTx also damages nearby healthy non-cancer tissues, leading to progressive fibrotic soft-tissue injury, consisting of pain, contracture, tissue-breakdown, infection, and lymphoedema. Mechanisms underlying the clinically observed ability of fat grafting to ameliorate some of these effects, however, are poorly understood. It was hypothesized that RTx significantly alters fibroblast cell function and the paracrine secretome of adipose-derived stem cells (ADSC) may mitigate these changes. METHODS: To investigate cellular changes resulting in the fibrotic side-effects of RTx, cultured normal human dermal fibroblasts (NHDF) were irradiated (10Gy), then studied using functional assays that reflect key fibroblast functions, and compared with unirradiated controls. RNA-Seq and targeted microarrays (with specific examination of TGFß) were performed to elucidate altered gene pathways. Finally, conditioned-media from ADSC was used to treat irradiated fibroblasts and model fat graft surgery. RESULTS: RTx altered NHDF morphology, with cellular functional changes reflecting transition into a more invasive phenotype: increased migration, adhesion, contractility, and disordered invasion. Changes in genes regulating collagen and MMP homeostasis and cell-cycle progression were also detected. However, TGFß was not identified as a key intracellular regulator of the fibroblast response. Finally, treatment with ADSC-conditioned media reversed the RTx-induced hypermigratory state of NHDF. CONCLUSIONS: Our findings regarding cellular and molecular changes in irradiated fibroblasts help explain clinical manifestations of debilitating RTx-induced fibrosis. ADSC-secretome-mediated reversal indicated that these constituents may be used to combat the devastating side-effects of excessive unwanted fibrosis in RTx and other human fibrotic diseases.

6.
Biomaterials ; 251: 120091, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32408048

RESUMO

The structural and physiological complexity of currently available liver organoids is limited, thereby reducing their relevance for drug studies, disease modelling, and regenerative therapy. In this study we combined mouse liver progenitor cells (LPCs) with mouse liver sinusoidal endothelial cells (LSECs) to generate hepatobiliary organoids with liver-specific vasculature. Organoids consisting of 5x103 cells were created from either LPCs, or a 1:1 combination of LPC/LSECs. LPC organoids demonstrated mild hepatobiliary differentiation in vitro with minimal morphological change; in contrast LPC/LSEC organoids developed clusters of polygonal hepatocyte-like cells and biliary ducts over a 7 day period. Hepatic (albumin, CPS1, CYP3A11) and biliary (GGT1) genes were significantly upregulated in LPC/LSEC organoids compared to LPC organoids over 7 days, as was albumin secretion. LPC/LSEC organoids also had significantly higher in vitro viability compared to LPC organoids. LPC and LPC/LSEC organoids were transplanted into vascularised chambers created in Fah-/-/Rag2-/-/Il2rg-/- mice (50 LPC organoids, containing 2.5x105 LPCs, and 100 LPC/LSEC organoids, containing 2.5x105 LPCs). At 2 weeks, minimal LPCs survived in chambers with LPC organoids, but robust hepatobiliary ductular tissue was present in LPC/LSEC organoids. Morphometric analysis demonstrated a 115-fold increase in HNF4α+ cells in LPC/LSEC organoid chambers (17.26 ± 4.34 cells/mm2 vs 0.15 ± 0.15 cells/mm2, p = 0.018), and 42-fold increase in Sox9+ cells in LPC/LSEC organoid chambers (28.29 ± 6.05 cells/mm2 vs 0.67 ± 0.67 cells/mm2, p = 0.011). This study presents a novel method to develop vascularised hepatobiliary organoids, with both in vitro and in vivo results confirming that incorporating LSECs with LPCs into organoids significantly increases the differentiation of hepatobiliary tissue within organoids and their survival post-transplantation.


Assuntos
Células Endoteliais , Organoides , Animais , Diferenciação Celular , Hepatócitos , Fígado , Camundongos
7.
J Tissue Eng Regen Med ; 14(4): 633-644, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32090506

RESUMO

For decades, plastic surgeons have spent considerable effort exploring anatomical regions for free flap design. More recently, tissue-engineering approaches have been utilised in an attempt to grow transplantable tissue flaps in vivo. The aim of this study was to engineer a fat flap with a vascular pedicle by combining autologous fat grafts and a novel acellular hydrogel (Adipogel) in an established tissue-engineering model comprising a chamber and blood vessel loop. An arteriovenous loop was created in the rat groin from the femoral vessels and positioned inside a perforated polycarbonate chamber. In Group 1, the chamber contained minced, centrifuged autologous fat; in Group 2, Adipogel was added to the graft; and in Group 3, Adipogel alone was used. Constructs were histologically examined at 6 and 12 weeks. In all groups, new tissue was generated. Adipocytes, although appearing viable in the graft at the time of insertion, were predominantly nonviable at 6 weeks. However, by 12 weeks, new fat had formed in all groups and was significantly greater in the combined fat/Adipogel group. No significant difference was seen in final construct total volume or construct neovascularisation between the groups. This study demonstrated that a pedicled adipose flap can be generated in rats by combining a blood vessel loop, an adipogenic hydrogel, and a lipoaspirate equivalent. Success appears to be based on adipogenesis rather than on adipocyte survival, and consistent with our previous work, this adipogenesis occurred subsequent to graft death and remodelling. The regenerative process was significantly enhanced in the presence of Adipogel.


Assuntos
Tecido Adiposo/metabolismo , Retalhos de Tecido Biológico , Hidrogéis/química , Engenharia Tecidual , Tecido Adiposo/citologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
9.
Adv Healthc Mater ; 8(24): e1901106, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714024

RESUMO

Poor vascularization remains a key limiting factor in translating advances in tissue engineering to clinical applications. Vascular pedicles (large arteries and veins) isolated in plastic chambers are known to sprout an extensive capillary network. This study examined the effect vascular pedicles and scaffold architecture have on vascularization and tissue integration of implanted silk scaffolds. Porous silk scaffolds with or without microchannels are manufactured to support implantation of a central vascular pedicle, without a chamber, implanted in the groin of Sprague Dawley rats, and assessed morphologically and morphometrically at 2 and 6 weeks. At both time points, blood vessels, connective tissue, and an inflammatory response infiltrate all scaffold pores externally, and centrally when a vascular pedicle is implanted. At week 2, vascular pedicles significantly increase the degree of scaffold tissue infiltration, and both the pedicle and the scaffold microchannels significantly increase vascular volume and vascular density. Interestingly, microchannels contribute to increased scaffold vascularity without affecting overall tissue infiltration, suggesting a direct effect of biomaterial architecture on vascularization. The inclusion of pedicles and microchannels are simple and effective proangiogenic techniques for engineering thick tissue constructs as both increase the speed of construct vascularization in the early weeks post in vivo implantation.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Células Cultivadas , Imuno-Histoquímica , Masculino , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Seda/química
10.
Int J Nanomedicine ; 14: 4613-4624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308651

RESUMO

Background: Bacterial infection is a common and serious complication in orthopedic implants following traumatic injury, which is often associated with extensive soft tissue damage and contaminated wounds. Multidrug-resistant bacteria have been found in these infected wounds, especially in patients who have multi trauma and prolonged stay in intensive care units.Purpose: The objective of this study was to develop a coating on orthopedic implants that is effective against drug-resistant bacteria. Methods and results: We applied nanoparticles (30-70nm) of the trace element selenium (Se) as a coating through surface-induced nucleation-deposition on titanium implants and investigated the antimicrobial activity against drug resistant bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) in vitro and in an infected femur model in rats.The nanoparticles were shown in vitro to have antimicrobial activity at concentrations as low as 0.5ppm. The nanoparticle coatings strongly inhibited biofilm formation on the implants and reduced the number of viable bacteria in the surrounding tissue following inoculation of implants with biofilm forming doses of bacteria. Conclusion: This study shows a proof of concept for a selenium nanoparticle coatings as a potential anti-infective barrier for orthopedic medical devices in the setting of contamination with multi-resistant bacteria. It also represents one of the few (if only) in vivo assessment of selenium nanoparticle coatings on reducing antibiotic-resistant orthopedic implant infections.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Ortopedia , Próteses e Implantes , Selênio/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Placas Ósseas , Parafusos Ósseos , Células Cultivadas , Contagem de Colônia Microbiana , Humanos , Masculino , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Ratos Sprague-Dawley , Titânio/farmacologia
12.
Acta Biomater ; 94: 281-294, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31152943

RESUMO

Tissue flaps are used to cover large/poorly healing wounds, but involve complex surgery and donor site morbidity. In this study a tissue flap is assembled using the mammalian body as a bioreactor to functionally connect an artery and vein to a human capillary network assembled from induced pluripotent stem cell-derived endothelial cells (hiPSC ECs). In vitro: Porous NovoSorb™ scaffolds (3 mm × 1.35 mm) were seeded with 200,000 hiPSC ECs ±â€¯100,000 human vascular smooth muscle cells (hvSMC), and cultured for 1-3 days, with capillaries formed by 24 h which were CD31+, VE-Cadherin+, EphB4+, VEGFR2+ and Ki67+, whilst hvSMCs (calponin+) attached abluminally. In vivo: In SCID mice, bi-lateral epigastric vascular pedicles were isolated in a silicone chamber for a 3 week 'delay period' for pedicle capillary sprouting, then reopened, and two hiPSC EC ±â€¯hvSMCs seeded scaffolds transplanted over the pedicle. The chamber was either resealed (Group 1), or removed and surrounding tissue secured around the pedicle + scaffolds (Group 2), for 1 or 2 weeks. Human capillaries survived in vivo and were CD31+, VE-Cadherin+ and VEGFR2+. Human vSMCs remained attached, and host mesenchymal cells also attached abluminally. Systemically injected FITC-dextran present in human capillary lumens indicated inosculation to host capillaries. Human iPSC EC capillary morphometric parameters at one week in vivo were equal to or higher than the same parameters measured in human abdominal skin. This 'proof of concept' study has demonstrated that bio-engineering an autologous human tissue flap based on hiPSC EC could minimize the use of donor flaps and has potential applications for complex wound coverage. STATEMENT OF SIGNIFICANCE: Tissue flaps, used for surgical reconstruction of wounds, require complex surgery, often associated with morbidity. Bio-engineering a simpler alternative, we assembled a human induced pluripotent stem cell derived endothelial cell (hiPSC ECs) capillary network in a porous scaffold in vitro, which when transplanted over a mouse vascular pedicle in vivo formed a functional tissue flap with mouse blood flow in the human capillaries. Therefore it is feasible to form an autologous tissue flap derived from a hiPSC EC capillary network assembled in vitro, and functionally connect to a vascular pedicle in vivo that could be utilized in complex wound repair for chronic or acute wounds.


Assuntos
Capilares/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Poliuretanos/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Capilares/citologia , Linhagem Celular , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos SCID , Porosidade , Procedimentos de Cirurgia Plástica
13.
Plast Reconstr Surg ; 142(4): 939-950, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29979371

RESUMO

BACKGROUND: Free fat grafting is popular, but it is still unclear how it works. Although focusing on graft survival seems an obvious direction for improving clinical results, the authors' research suggests that long-term volume retention is in part attributable to new fat regeneration. Measures to facilitate adipogenesis may therefore be equally important. METHODS: To investigate the relative roles of survival and regeneration of fat grafts, the authors measured the fate of human lipoaspirate implanted into the scalps of immunodeficient mice, with and without stromal vascular fraction and a porcine extracellular matrix (Adipogel). Specifically, the authors were interested in volume retention, and the composition of implanted or regenerated tissue at 6 and 12 weeks. RESULTS: Free fat grafts exhibited poor volume retention and survival. Almost all of the injected human adipocytes died, but new mouse fat formed peripheral to the encapsulated fat graft. Adipogel and stromal vascular fraction improved proliferation of murine fat and human vasculature. Human CD34 stromal cells were present but only in the periphery, and there was no evidence that these cells differentiated into adipocytes. CONCLUSIONS: In the authors' model, most of the implanted tissue died, but unresorbed dead fat accounted substantially for the long-term, reduced volume. A layer of host-derived, regenerated adipose tissue was present at the periphery. This regeneration may be driven by the presence of dying fat, and it was enhanced by addition of the authors' adipogenic adjuncts. Future research should perhaps focus not only on improving graft survival but also on enhancing the adipogenic environment conducive to fat regeneration.


Assuntos
Tecido Adiposo/transplante , Sobrevivência de Enxerto/fisiologia , Adipogenia/fisiologia , Animais , Proliferação de Células/fisiologia , Feminino , Xenoenxertos/fisiologia , Humanos , Lipectomia/métodos , Camundongos SCID , Pessoa de Meia-Idade , Modelos Animais , Regeneração/fisiologia , Manejo de Espécimes , Células Estromais , Retalhos Cirúrgicos , Transplante Heterólogo
14.
Trends Biotechnol ; 36(10): 1011-1024, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29937050

RESUMO

Vascularisation is key to developing large transplantable tissue constructs capable of providing therapeutic benefits. The vascularised tissue engineering chamber originates from surgical concepts in tissue prefabrication and microsurgery. It serves as an in vivo bioreactor in the form of a closed, protected space surgically created and embedded within the body by fitting a noncollapsible chamber around major blood vessels. This creates a highly angiogenic environment which facilitates the engraftment and survival of transplanted cells and tissue constructs. This article outlines the chamber concept and explores its application in the context of recent advances in biomedical engineering, and how this can play a role in the future of cell therapies and regenerative medicine.


Assuntos
Bioengenharia/métodos , Reatores Biológicos , Microcirurgia/métodos , Neovascularização Fisiológica , Medicina Regenerativa/métodos
15.
Microsurgery ; 38(5): 544-552, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29624731

RESUMO

BACKGROUND: The survival of engineered cardiac muscle 'grafts' to the epicardium is limited by vascularization post-transplantation in rat models. In this article, we describe the methodology of a novel rat model that allows for the transplantation of an engineered cardiac muscle flap (ECMF) onto the epicardium. MATERIALS AND METHODS: A total of 40 rats were used. Twenty-four neonatal rats were used to harvest cardiomyocytes. At week 1, ECMF were generated by seeding cardiomyocytes into the arteriovenous loop (AVL) tissue engineering chamber implanted into the right groin of adult rats (n = 8). At week 6, the ECMF were harvested based on a pedicle along the femoral-iliac-abdominal vessel and anastomosed to the neck vessels of the recipient syngeneic adult rats (n = 8). The flaps were delivered into the thoracic cavity and onto the epicardium. The transplanted flaps were harvested at week 10. Survival of the flaps was assessed by the patency of anastomoses and viability of the cardiomyocytes through histological analysis (hematoxylin and eosin [H&E], desmin, and von Willebrand factor [vWF] immunostaining). RESULTS: Six out of 8 rats survived the transplantation procedure. These remaining 6 recipient rats survived until harvest time point at 4 weeks post-transplantation. The mean area of the flap was 46.7mm2 . Six out of 6 flaps harvested at week 10 showed viable cardiomyocytes using desmin immunostaining and vascular channels were seen at the interface between flap and epicardium. CONCLUSION: This is a technically feasible model that will be useful for future assessment of different cardiac stem cell implants and their functional significance in rat heart models.


Assuntos
Microcirurgia/métodos , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/transplante , Pericárdio/cirurgia , Retalhos Cirúrgicos/irrigação sanguínea , Retalhos Cirúrgicos/transplante , Engenharia Tecidual/métodos , Coleta de Tecidos e Órgãos/métodos , Anastomose Cirúrgica , Animais , Aorta Abdominal , Artérias Carótidas/cirurgia , Dissecação , Estudos de Viabilidade , Artéria Femoral , Sobrevivência de Enxerto , Virilha/cirurgia , Artéria Ilíaca , Veias Jugulares/cirurgia , Ratos , Ratos Sprague-Dawley , Transplante Isogênico
16.
Polymers (Basel) ; 10(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30966215

RESUMO

Porous polyester-ether hydrogel scaffolds (PEHs) were fabricated using acid chloride/alcohol chemistry and a salt templating approach. The PEHs were produced from readily available and cheap commercial reagents via the reaction of hydroxyl terminated poly(ethylene glycol) (PEG) derivatives with sebacoyl, succinyl, or trimesoyl chloride to afford ester cross-links between the PEG chains. Through variation of the acid chloride cross-linkers used in the synthesis and the incorporation of a hydrophobic modifier (poly(caprolactone) (PCL)), it was possible to tune the degradation rates and mechanical properties of the resulting hydrogels. Several of the hydrogel formulations displayed exceptional mechanical properties, remaining elastic without fracture at compressive strains of up to 80%, whilst still displaying degradation over a period of weeks to months. A subcutaneous rat model was used to study the scaffolds in vivo and revealed that the PEHs were infiltrated with well vascularised tissue within two weeks and had undergone significant degradation in 16 weeks without any signs of toxicity. Histological evaluation for immune responses revealed that the PEHs incite only a minor inflammatory response that is reduced over 16 weeks with no evidence of adverse effects.

17.
J Tissue Eng Regen Med ; 12(2): 382-392, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28486770

RESUMO

Nonvascularized fat grafting is a valuable technique for soft tissue reconstruction but poor survival of fat in the host environment remains a problem. A process known as cell-assisted transfer is used to enhance fat graft retention by adding stromal vascular fraction, an adipose-derived stem cell (ASC) rich content to lipoaspirate. We have recently shown that the use of melatonin, a reactive oxygen species scavenger, protects human ASCs from hydrogen peroxide-induced oxidative stress and cell death in vitro but its role as a pharmacological adjunct in clinical fat grafting has not been studied. Herein, the effect of melatonin was examined on human ASCs in vitro using survival and functional assays including the MTT assay, CellTox Green assay, monolayer scratch assay as well as a human cytokine chemoluminescence, and tumour necrosis factor-α assay. Further, the effect of melatonin-treated fat grafts was tested in vivo with a murine model. Haematoxylin and eosin staining, perilipin and CD31 immunostaining were performed with morphometric analysis of adipose tissue. The results demonstrate that, in vitro, the addition of melatonin to ASCs significantly improved their cell-viability, promoted cell migration and preserved membrane integrity as compared to controls. In addition, it induced a potent anti-inflammatory response by downregulating acute inflammatory cytokines particularly tumour necrosis factor-α. For the first time, it is demonstrated in vivo that melatonin enhances fat graft volume retention by reducing inflammation and increasing the percentage of adipose volume within fat grafts with comparable volumes to that of cell-assisted lipotransfer. Based on these novel findings, melatonin may be a useful pharmacological adjunct in clinical fat grafting.


Assuntos
Tecido Adiposo/citologia , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo , Sobrevivência de Enxerto/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Melatonina/farmacologia , Células-Tronco/citologia , Adiposidade/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Fisiológica/efeitos dos fármacos , Perilipina-1/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
Plast Reconstr Surg ; 139(5): 1093e-1104e, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28445363

RESUMO

BACKGROUND: Cell-assisted lipotransfer has been promisingly applied to restore soft-tissue defects in plastic surgery; however, the harvesting of stromal vascular fraction increases morbidity and poses potential safety hazards. The authors investigated whether adding indomethacin, an antiinflammatory proadipogenic drug, to the fat graft at the time of transplantation would enhance the final graft volume compared with cell-assisted lipotransfer. METHODS: In vitro, human adipose-derived stem cells were cultured in conditioned growth media supplemented with various doses of indomethacin to investigate adipogenesis and the expression of the adipogenic genes. In vivo, lipoaspirate mixed with stromal vascular fractions or indomethacin was injected into the dorsum of mice. Tissues were harvested at weeks 2, 4, and 12 to evaluate histologic changes. RESULTS: In vitro, polymerase chain reaction analysis revealed that increased up-regulation of adipogenic genes and activation of the peroxisome proliferator-activated receptor-γ pathway. In vivo, the percentage volume of adipocytes in the indomethacin-assisted groups was higher than that in the lipoaspirate-alone (control) group at 12 weeks (p = 0.016), and was equivalent to the volume in the cell-assisted groups (p = 1.000). Indomethacin improved adipose volumes but had no effect on vascularity. A larger number of small adipocytes appeared in the treatment samples than in the controls at 2 weeks (p = 0.044) and 4 weeks (p = 0.021). CONCLUSIONS: Pretreating lipoaspirate with indomethacin enhances the final volume retention of engrafted fat. This result is explained in part by increased adipogenesis and possibly by the inhibition of inflammatory responses.


Assuntos
Adipogenia/genética , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Sobrevivência de Enxerto/efeitos dos fármacos , Indometacina/farmacologia , Indometacina/uso terapêutico , Inflamação/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Camundongos
20.
J Biomed Mater Res A ; 105(7): 1940-1948, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28294550

RESUMO

Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1940-1948, 2017.


Assuntos
Colágeno/química , Reagentes de Ligações Cruzadas/química , Maleimidas/química , Gases em Plasma/química , Compostos de Sulfidrila/química , Propriedades de Superfície , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...