Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38769007

RESUMO

Even in the absence of specific sensory input or a behavioral task, the brain produces structured patterns of activity. This organized activity is modulated by changes in arousal. Here, we use wide-field voltage imaging to establish how arousal relates to cortical network voltage and hemodynamic activity in spontaneously behaving head-fixed male and female mice expressing the voltage-sensitive fluorescent FRET sensor Butterfly 1.2. We find that global voltage and hemodynamic signals are both positively correlated with changes in arousal with a maximum correlation of 0.5 and 0.25, respectively, at a time lag of 0 s. We next show that arousal influences distinct cortical regions for both voltage and hemodynamic signals. These include a broad positive correlation across most sensory-motor cortices extending posteriorly to the primary visual cortex observed in both signals. In contrast, activity in the prefrontal cortex is positively correlated to changes in arousal for the voltage signal while it is a slight net negative correlation observed in the hemodynamic signal. Additionally, we show that coherence between voltage and hemodynamic signals relative to arousal is strongest for slow frequencies below 0.15 Hz and is near zero for frequencies >1 Hz. We finally show that coupling patterns are dependent on the behavioral state of the animal with correlations being driven by periods of increased orofacial movement. Our results indicate that while hemodynamic signals show strong relations to behavior and arousal, these relations are distinct from those observed by voltage activity.


Assuntos
Nível de Alerta , Hemodinâmica , Rede Nervosa , Animais , Nível de Alerta/fisiologia , Camundongos , Masculino , Feminino , Hemodinâmica/fisiologia , Rede Nervosa/fisiologia , Córtex Cerebral/fisiologia , Camundongos Endogâmicos C57BL
2.
Neuron ; 110(17): 2836-2853.e8, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803270

RESUMO

The thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have not been well studied in the awake brain. We optogenetically modulated the ventro-posterior-medial thalamus in the vibrissa pathway of the awake mouse and measured spiking activity in the thalamus and activity in primary somatosensory cortex (S1) using extracellular electrophysiology and genetically encoded voltage imaging. Thalamic hyperpolarization significantly enhanced thalamic sensory-evoked bursting; however, surprisingly, the S1 cortical response was not amplified, but instead, timing precision was significantly increased, spatial activation more focused, and there was an increased synchronization of cortical inhibitory neurons. A thalamocortical network model implicates the modulation of precise timing of feedforward thalamic population spiking, presenting a highly sensitive, timing-based gating of sensory signaling to the cortex.


Assuntos
Córtex Somatossensorial , Vigília , Animais , Camundongos , Neurônios/fisiologia , Transdução de Sinais , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia
3.
Neuroscience ; 423: 55-65, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705892

RESUMO

Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. To conduct such a direct test, we utilized rapid optogenetic activation and inactivation of the GABAergic output of the substantia nigra pars reticulata (SNr) to MT in male and female mice that were trained in a sensory cued left/right licking task. Directional licking tasks have previously been shown to depend on a thalamocortical feedback loop between ventromedial MT and antero-lateral premotor cortex. In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.


Assuntos
Gânglios da Base/fisiologia , Tomada de Decisões/fisiologia , Movimento/fisiologia , Inibição Neural/fisiologia , Substância Negra/fisiologia , Animais , Antecipação Psicológica/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Dependovirus/genética , Feminino , Lateralidade Funcional/fisiologia , Masculino , Camundongos , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Optogenética , Substância Negra/efeitos dos fármacos , Tálamo/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
5.
Neurophotonics ; 4(3): 031212, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28491905

RESUMO

With the recent breakthrough in genetically expressed voltage indicators (GEVIs), there has been a tremendous demand to determine the capabilities of these sensors in vivo. Novel voltage sensitive fluorescent proteins allow for direct measurement of neuron membrane potential changes through changes in fluorescence. Here, we utilized ArcLight, a recently developed GEVI, and examined the functional characteristics in the widely used mouse somatosensory whisker pathway. We measured the resulting evoked fluorescence using a wide-field microscope and a CCD camera at 200 Hz, which enabled voltage recordings over the entire cortical region with high temporal resolution. We found that ArcLight produced a fluorescent response in the S1 barrel cortex during sensory stimulation at single whisker resolution. During wide-field cortical imaging, we encountered substantial hemodynamic noise that required additional post hoc processing through noise subtraction techniques. Over a period of 28 days, we found clear and consistent ArcLight fluorescence responses to a simple sensory input. Finally, we demonstrated the use of ArcLight to resolve cortical S1 sensory responses in the awake mouse. Taken together, our results demonstrate the feasibility of ArcLight as a measurement tool for mesoscopic, chronic imaging.

6.
Neuroimage Clin ; 7: 288-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25610792

RESUMO

Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.


Assuntos
Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Doença dos Neurônios Motores/fisiopatologia , Vias Neurais/fisiopatologia , Mapeamento Encefálico , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA