Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540276

RESUMO

Stroke is the leading cause of adult disability worldwide. The majority of stroke survivors are left with devastating functional impairments for which few treatment options exist. Recently, a number of studies have used ectopic expression of transcription factors that direct neuronal cell fate with the intention of converting astrocytes to neurons in various models of brain injury and disease. While there have been reports that question whether astrocyte-to-neuron conversion occurs in vivo, here, we have asked if ectopic expression of the transcription factor Neurod1 is sufficient to promote improved functional outcomes when delivered in the subacute phase following endothelin-1-induced sensory-motor cortex stroke. We used an adeno-associated virus to deliver Neurod1 from the short GFAP promoter and demonstrated improved functional outcomes as early as 28 days post-stroke and persisting to at least 63 days post-stroke. Using Cre-based cell fate tracking, we showed that functional recovery correlated with the expression of neuronal markers in transduced cells by 28 days post-stroke. By 63 days post-stroke, the reporter-expressing cells comprised ~20% of all the neurons in the perilesional cortex and expressed markers of cortical neuron subtypes. Overall, our findings indicate that ectopic expression of Neurod1 in the stroke-injured brain is sufficient to enhance neural repair.

2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339065

RESUMO

Stroke results in neuronal cell death, which causes long-term disabilities in adults. Treatment options are limited and rely on a narrow window of opportunity. Apoptosis inhibitors demonstrate efficacy in improving neuronal cell survival in animal models of stroke. However, many inhibitors non-specifically target apoptosis pathways and high doses are needed for treatment. We explored the use of a novel caspase-3/7 inhibitor, New World Laboratories (NWL) 283, with a lower IC50 than current caspase-3/7 inhibitors. We performed in vitro and in vivo assays to determine the efficacy of NWL283 in modulating cell death in a preclinical model of stroke. In vitro and in vivo assays show that NWL283 enhances cell survival of neural precursor cells. Delivery of NWL283 following stroke enhances endogenous NPC migration and leads to increased neurogenesis in the stroke-injured cortex. Furthermore, acute NWL283 administration is neuroprotective at the stroke injury site, decreasing neuronal cell death and reducing microglia activation. Coincident with NWL283 delivery for 8 days, stroke-injured mice exhibited improved functional outcomes that persisted following cessation of the drug. Therefore, we propose that NWL283 is a promising therapeutic warranting further investigation to enhance stroke recovery.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Células-Tronco Neurais , Acidente Vascular Cerebral , Animais , Camundongos , Sobrevivência Celular , Caspase 3 , Acidente Vascular Cerebral/tratamento farmacológico , Apoptose , Neurogênese/fisiologia , Camundongos Endogâmicos C57BL , Isquemia Encefálica/tratamento farmacológico
3.
Brain Res ; 1822: 148648, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890574

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation, death or damage of oligodendrocytes, and axonal degeneration. Current MS treatments are non-curative, associated with undesired side-effects, and expensive, highlighting the need for expanded therapeutic options for patients. There is great interest in developing interventions using drugs or therapeutics to reduce symptom onset and protect pre-existing myelin. Metformin is a well-tolerated drug used to treat Type 2 diabetes that has pleiotropic effects in the central nervous system (CNS), including reducing inflammation, enhancing oligodendrogenesis, increasing the survival/proliferation of neural stem cells (NSCs), and increasing myelination. Here, we investigated whether metformin administration could improve functional outcomes, modulate oligodendrocyte precursor cells (OPCs), and reduce inflammation in a well-established mouse model of MS- experimental autoimmune encephalomyelitis (EAE). Male and female mice received metformin treatment at the time of EAE induction ("acute") or upon presentation of disease symptoms ("delayed"). We found that acute metformin treatment improved functional outcomes, concomitant with reduced microglia numbers and decreased dysmyelination. Conversely, delayed metformin treatment did not improve functional outcomes. Our findings reveal that metformin administration can improve EAE outcomes when administered before symptom onset in both sexes.


Assuntos
Diabetes Mellitus Tipo 2 , Encefalomielite Autoimune Experimental , Metformina , Esclerose Múltipla , Humanos , Camundongos , Feminino , Masculino , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Metformina/farmacologia , Inflamação/tratamento farmacológico , Gravidade do Paciente , Camundongos Endogâmicos C57BL
4.
Acta Biomater ; 171: 392-405, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683963

RESUMO

The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.


Assuntos
Criogéis , Células-Tronco Neurais , Eletrodos , Neurônios/fisiologia , Condutividade Elétrica , Estimulação Elétrica , Eletrodos Implantados
5.
Stem Cells Dev ; 32(19-20): 606-621, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551982

RESUMO

The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Astrócitos/metabolismo , Diferenciação Celular/genética
6.
Stem Cells Transl Med ; 12(6): 415-428, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209417

RESUMO

Spinal cord injury (SCI) results in devastating patient outcomes with few treatment options. A promising approach to improve outcomes following SCI involves the activation of endogenous precursor populations including neural stem and progenitor cells (NSPCs) which are located in the periventricular zone (PVZ), and oligodendrocyte precursor cells (OPCs) found throughout the parenchyma. In the adult spinal cord, resident NSPCs are primarily mitotically quiescent and aneurogenic, while OPCs contribute to ongoing oligodendrogenesis into adulthood. Each of these populations is responsive to SCI, increasing their proliferation and migration to the site of injury; however, their activation is not sufficient to support functional recovery. Previous work has shown that administration of the FDA-approved drug metformin is effective at promoting endogenous brain repair following injury, and this is correlated with enhanced NSPC activation. Here, we ask whether metformin can promote functional recovery and neural repair following SCI in both males and females. Our results reveal that acute, but not delayed metformin administration improves functional outcomes following SCI in both sexes. The functional improvement is concomitant with OPC activation and oligodendrogenesis. Our data also reveal sex-dependent effects of metformin following SCI with increased activation of NSPCs in females and reduced microglia activation in males. Taken together, these findings support metformin as a viable therapeutic strategy following SCI and highlight its pleiotropic effects in the spinal cord.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Masculino , Feminino , Humanos , Microglia , Traumatismos da Medula Espinal/tratamento farmacológico , Neurônios , Medula Espinal
7.
Brain Res ; 1804: 148263, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702184

RESUMO

Endogenous neural stem cells and their progeny (together termed neural precursor cells (NPCs)) are promising candidates to facilitate neuroregeneration. Charge-balanced biphasic monopolar stimulation (BPMP) is a clinically relevant approach that can activate NPCs both in vitro and in vivo. Herein, we established a novel ex vivo stimulation system to optimize the efficacy of BPMP electric field (EF) application in activating endogenous NPCs. Using the ex vivo system, we discerned that cathodal amplitude of 200 µA resulted in the greatest NPC pool expansion and enhanced cathodal migration. Application of the same stimulation parameters in vivo resulted in the same NPC activation in the mouse brain. The design and implementation of the novel ex vivo model bridges the gap between in vitro and in vivo systems, enabling a moderate throughput stimulation system to explore and optimize EF parameters that can be applied to clinically relevant brain injury/disease models.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/fisiologia , Neurônios , Estimulação Elétrica/métodos
8.
ACS Appl Mater Interfaces ; 15(1): 91-105, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36520607

RESUMO

We exploit the electrostatic interactions between the positively charged neuroprotective peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), and negatively charged poly(lactic-co-glycolic acid) (PLGA) nanoparticles to control PACAP release from the surface of nanoparticles dispersed in a hyaluronan-methylcellulose (HAMC) hydrogel composite. PACAP is a promising therapeutic for the treatment of neurological disorders, yet it has been difficult to deliver in vivo. Herein, the PACAP release rate was tuned by manipulating peptide adsorption onto the surface of blank nanoparticles by modifying either nanoparticle loading in the hydrogel or nanoparticle surface charge. This peptide-nanoparticle interaction was controlled by the pH-responsive carboxylic acid end terminal groups of PLGA. We further validated this system with the controlled release of a novel stabilized PACAP analog: Ac-[Ala15, Ala20]PACAP-propylamide, which masks its recognition to peptidases in circulation. Both wild-type and stabilized PACAP released from the vehicle increased the production of neuroprotective Interleukin-6 from cultured primary astrocytes. Using computational fluid dynamics methods, PACAP release from the composite was predicted based on experimentally derived adsorption isotherms, which exhibited similar release profiles to experimental data. This versatile adsorption-based system was used to deliver PACAP locally to the brains of stroke-injured mice over a 10 day period in vivo, highlighting its effectiveness for the controlled release of PACAP to the central nervous system.


Assuntos
Hidrogéis , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Camundongos , Animais , Sistemas de Liberação de Fármacos por Nanopartículas , Preparações de Ação Retardada , Adsorção , Eletricidade Estática
9.
Biomed Mater ; 18(1)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36537718

RESUMO

Electrode impedance is one of the greatest challenges facing neural interfacing medical devices and the use of electrical stimulation-based therapies in the fields of neurology and regenerative medicine. Maximizing contact between electronics and tissue would allow for more accurate recordings of neural activity and to stimulate with less power in implantable devices as electric signals could be more precisely transferred by a stable interfacial area. Neural environments, inherently wet and ion-rich, present a unique challenge for traditional conductive adhesives. As such, we look to marine mussels that use a 3,4-dihydroxyphenyl-L-analine (DOPA)-containing proteinaceous excretion to adhere to a variety of substrates for inspiration. By functionalizing alginate, which is an abundantly available natural polymer, with the catechol residues DOPA contains, we developed a hydrogel-based matrix to which carbon-based nanofiller was added to render it conductive. The synthesized product had adhesive energy within the range of previously reported mussel-based polymers, good electrical properties and was not cytotoxic to brain derived neural precursor cells.


Assuntos
Bivalves , Células-Tronco Neurais , Animais , Hidrogéis/química , Adesivos/química , Proteínas/química , Polímeros/química , Di-Hidroxifenilalanina/química
10.
Adv Healthc Mater ; 11(23): e2201164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177684

RESUMO

Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electric field application by proliferating, differentiating, and undergoing rapid and directed cathodal migration. Harnessing NPC potential is a promising strategy to facilitate neural repair following injury or disease. The use of electric fields to activate NPCs is limited by current electrode designs which are typically made of conductive metals that are stiff and can lead to neuroinflammation following implantation, in part due to the mechanical mismatch between physiological conditions and material. Herein, the design of a novel, injectable biobased soft electrode with properties suitable for electrical stimulation in vivo is explored. The recent interest in using biologically derived polymers which are relatively abundant and afford economic feasibility have been built upon. Sodium alginate is utilized to form soft hydrogels, thereby addressing the issue of mechanical mismatch, and the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), to generate an innovative new material. It is demonstrated that the optimized alginate PEDOT blend matches the modulus of the brain and is suitable for injection and is not cytotoxic to neural cells. Furthermore, in vivo studies demonstrate minimal activation of inflammatory cells upon implantation in the brain compared to classically used platinum-based electrodes.


Assuntos
Alginatos , Células-Tronco Neurais
11.
J Neuroinflammation ; 19(1): 146, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705953

RESUMO

BACKGROUND: Neonatal stroke is a devastating insult that can lead to life-long impairments. In response to hypoxic-ischaemic injury, there is loss of neurons and glia as well as a neuroinflammatory response mediated by resident immune cells, including microglia and astrocytes, which can exacerbate damage. Administration of the antidiabetic drug metformin has been shown to improve functional outcomes in preclinical models of brain injury and the cellular basis for metformin-mediated recovery is unknown. Given metformin's demonstrated anti-inflammatory properties, we investigated its role in regulating the microglia activation and used a microglia ablation strategy to investigate the microglia-mediated outcomes in a mouse model of neonatal stroke. METHODS: Hypoxia-ischaemia (H-I) was performed on post-natal day 8. Metformin was administered for one week, starting one day after injury. Immunohistochemistry was used to examine the spatiotemporal response of microglia and astrocytes after hypoxia-ischaemia, with or without metformin treatment. To evaluate the effects of microglia depletion after hypoxia-ischaemia, we delivered Plexxikon 5622 for 1 or 2 weeks post-injury. The regional pattern of microglia and astrocyte depletion was assessed through immunohistochemistry. Motor behaviour was assessed with the righting reflex, hindlimb suspension, grip strength and cylinder tests. RESULTS: Herein, we revealed a spatiotemporally regulated response of microglia and astrocytes after hypoxia-ischaemia. Metformin treatment after hypoxia-ischaemia had no effect on microglia number and proliferation, but significantly reduced microglia activation in all regions examined, concomitant with improved behavioural outcomes in injured mice. Plexxikon 5622 treatment successfully ablated microglia, resulting in a > 90% depletion in microglia in the neonatal brain. Microglia rapidly repopulated upon treatment cessation of Plexxikon. Most interesting, microglia ablation was sufficient to reduce functional deficits after hypoxia-ischaemia, mimicking the effects of 1 week of metformin treatment post-injury. CONCLUSION: These results highlight the importance of regulating the neuroinflammatory response after neonatal stroke to promote recovery.


Assuntos
Hipóxia-Isquemia Encefálica , Metformina , Acidente Vascular Cerebral , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia/complicações , Hipóxia-Isquemia Encefálica/complicações , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Microglia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
12.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269466

RESUMO

Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Astrócitos , Humanos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia
14.
Front Cell Neurosci ; 15: 654290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994947

RESUMO

Stroke is a leading cause of death and long-term disability worldwide. Current therapeutic options are limited in terms of their time for implementation and efficacy in promoting recovery. Cell transplantation has been shown to have promise in several animal models however significant challenges remain, including the optimal source of cells to promote neural repair. Here, we report on the use of a population of human ESC derived, cortically specified, neuroepithelial precursor cells (cNEPs) that are neurally restricted in their lineage potential. CNEPs have the potential to give rise to mature neural cell types following transplantation, including neurons, astrocytes and oligodendrocytes. With a view towards translation, we sought to determine whether this human cell source was effective in promoting improved functional outcomes following stroke. Undifferentiated cNEPs were transplanted in a pre-clinical endothelin-1 (ET-1) model of ischemic motor cortical stroke in immunocompromised SCID-beige mice and cellular and functional outcomes were assessed. We demonstrate that cNEP transplantation in the acute phase (4 days post-stroke) improves motor function as early as 20 days post-stroke, compared to stroke-injured, non-transplanted mice. At the time of recovery, a small fraction (<6%) of the transplanted cNEPs are observed within the stroke injury site. The surviving cells expressed the immature neuronal marker, doublecortin, with no differentiation into mature neural phenotypes. At longer survival times (40 days), the majority of recovered, transplanted mice had a complete absence of surviving cNEPS. Hence, human cNEPs grafted at early times post-stroke support the observed functional recovery following ET-1 stroke but their persistence is not required, thereby supporting a by-stander effect rather than cell replacement.

15.
Cell Rep Med ; 2(4): 100231, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948569

RESUMO

Cranial irradiation (IR) is an effective adjuvant therapy in the treatment of childhood brain tumors but results in long-lasting cognitive deficits associated with impaired neurogenesis, as evidenced in rodent models. Metformin has been shown to expand the endogenous neural stem cell (NSC) pool and promote neurogenesis under physiological conditions and in response to neonatal brain injury, suggesting a potential role in neurorepair. Here, we assess whether metformin pretreatment, a clinically feasible treatment for children receiving cranial IR, promotes neurorepair in a mouse cranial IR model. Using immunofluorescence and the in vitro neurosphere assay, we show that NSCs are depleted by cranial IR but spontaneously recover, although deficits to proliferative neuroblasts persist. Metformin pretreatment enhances the recovery of neurogenesis, attenuates the microglial response, and promotes recovery of long-term olfactory memory. These findings indicate that metformin is a promising candidate for further preclinical and clinical investigations of neurorepair in childhood brain injuries.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Memória de Longo Prazo/efeitos dos fármacos , Metformina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/patologia , Disfunção Cognitiva/patologia , Irradiação Craniana/métodos , Modelos Animais de Doenças , Masculino , Metformina/administração & dosagem , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos
16.
Neuro Oncol ; 23(9): 1523-1536, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34042964

RESUMO

BACKGROUND: Cranial radiation therapy (CRT) is a mainstay of treatment for malignant pediatric brain tumors and high-risk leukemia. Although CRT improves survival, it has been shown to disrupt normal brain development and result in cognitive impairments in cancer survivors. Animal studies suggest that there is potential to promote brain recovery after injury using metformin. Our aim was to evaluate whether metformin can restore brain volume outcomes in a mouse model of CRT. METHODS: C57BL/6J mice were irradiated with a whole-brain radiation dose of 7 Gy during infancy. Two weeks of metformin treatment started either on the day of or 3 days after irradiation. In vivo magnetic resonance imaging was performed prior to irradiation and at 3 subsequent time points to evaluate the effects of radiation and metformin on brain development. RESULTS: Widespread volume loss in the irradiated brain appeared within 1 week of irradiation with limited subsequent recovery in volume outcomes. In many structures, metformin administration starting on the day of irradiation exacerbated radiation-induced injury, particularly in male mice. Metformin treatment starting 3 days after irradiation improved brain volume outcomes in subcortical regions, the olfactory bulbs, and structures of the brainstem and cerebellum. CONCLUSIONS: Our results show that metformin treatment has the potential to improve neuroanatomical outcomes after CRT. However, both timing of metformin administration and subject sex affect structure outcomes, and metformin may also be deleterious. Our results highlight important considerations in determining the potential benefits of metformin treatment after CRT and emphasize the need for caution in repurposing metformin in clinical studies.


Assuntos
Metformina , Animais , Encéfalo , Criança , Irradiação Craniana/efeitos adversos , Humanos , Imageamento por Ressonância Magnética , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
17.
Stem Cells ; 39(6): 776-786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529418

RESUMO

Neural stem and progenitor cells (collectively termed neural precursor cells [NPCs]) are found along the ventricular neuraxis extending from the spinal cord to the forebrain in regionally distinct niches comprised of different cell types, architecture, and cell-cell interactions. An understanding of the factors that regulate NPC behavior is critical for developing therapeutics to repair the injured central nervous system. Herein, we demonstrate that myelin basic protein (MBP), the major cytoplasmic protein constituent of the myelin sheath in oligodendrocytes, can regulate NPC behavior. Under physiological conditions, NPCs are not in contact with intracellular MBP; however, upon injury, MBP is released into the neural parenchyma. We reveal that MBP presented in a spinal cord niche is inhibitory to NPC proliferation. This inhibitory effect is regionally distinct as spinal cord NPCs, but not forebrain-derived NPCs, are inhibited by MBP. We performed coculture and conditioned media experiments that reveal the stem cell niche is a key regulator of MBP's inhibitory actions on NPCs. The inhibition is mediated by a heat-labile protein released by spinal cord niche cells, but not forebrain niche cells. However, forebrain NPCs are also inhibited by the spinal cord derived factor as revealed following in vivo infusion of the spinal cord niche-derived conditioned media. Moreover, we show that MBP inhibits oligodendrogenesis from NPCs. Together, these findings highlight the role of MBP and the regionally distinct microenvironment in regulating NPC behavior which has important implications for stem cell-based regenerative strategies.


Assuntos
Diferenciação Celular/fisiologia , Proteína Básica da Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Bainha de Mielina/metabolismo , Medula Espinal/metabolismo
19.
Eur J Neurosci ; 53(4): 1334-1349, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33010080

RESUMO

Neonatal stroke is a leading cause of long-term disability and currently available rehabilitation treatments are insufficient to promote recovery. Activating neural precursor cells (NPCs) in adult rodents, in combination with rehabilitation, can accelerate functional recovery following stroke. Here, we describe a novel method of constraint-induced movement therapy (CIMT) in a rodent model of neonatal stroke that leads to improved functional outcomes, and we asked whether the recovery was correlated with expansion of NPCs. A hypoxia/ischemia (H/I) injury was induced on postnatal day 8 (PND8) via unilateral carotid artery ligation followed by systemic hypoxia. One week and two weeks post-H/I, CIMT was administered in the form of 3 botulinum toxin (Botox) injections, which induced temporary paralysis in the unaffected limb. Functional recovery was assessed using the foot fault task. NPC proliferation was assessed using the neurosphere assay and EdU immunohistochemistry. We found that neonatal H/I injury alone expands the NPC pool by >2.5-fold relative to controls. We determined that using Botox injections as a method to provide CIMT results in significant functional motor recovery after H/I. However, CIMT does not lead to enhanced NPC activation or migration into the injured parenchyma in vivo. At the time of functional recovery, increased numbers of proliferating inflammatory cells were found within the injured motor cortex. Together, these findings suggest that NPC activation following CIMT does not account for the observed functional improvement and suggests that CIMT-mediated modification of the CNS inflammatory response may play a role in the motor recovery.


Assuntos
Córtex Motor , Células-Tronco Neurais , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Recém-Nascido , Recuperação de Função Fisiológica
20.
Stem Cells Transl Med ; 9(12): 1509-1530, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691994

RESUMO

Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.


Assuntos
Regeneração Nervosa/fisiologia , Neuroproteção/fisiologia , Traumatismos da Medula Espinal/terapia , Humanos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...