Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(2): 907-916, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34978445

RESUMO

The microbial transformation potential of 6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was explored in anaerobic microbial systems. Microbial communities from anaerobic wastewater sludge, an anaerobic digester, and anaerobic dechlorinating cultures enriched from aquifer materials reductively dechlorinated 6:2 Cl-PFESA to 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA), which was identified as the sole metabolite by non-target analysis. Rapid and complete reductive dechlorination of 6:2 Cl-PFESA was achieved by the anaerobic dechlorinating cultures. The microbial community of the anaerobic dechlorinating cultures was impacted by 6:2 Cl-PFESA exposure. Organohalide-respiring bacteria originally present in the anaerobic dechlorinating cultures, including Geobacter, Dehalobacter, and Dehalococcoides, decreased in relative abundance over time. As the relative abundance of organohalide-respiring bacteria decreased, the rates of 6:2 Cl-PFESA dechlorination decreased, suggesting that the most likely mechanism for reductive dechlorination of 6:2 Cl-PFESA was co-metabolism rather than organohalide respiration. Reductive defluorination of 6:2 Cl-PFESA was not observed. Furthermore, 6:2 H-PFESA exhibited 5.5 times lower sorption affinity to the suspended biosolids than 6:2 Cl-PFESA, with the prospect of increased mobility in the environment. These results show the susceptibility of 6:2 Cl-PFESA to microbially mediated reductive dechlorination and the likely persistence of the product, 6:2 H-PFESA, in anaerobic environments.


Assuntos
Chloroflexi , Anaerobiose , Biodegradação Ambiental , Chloroflexi/metabolismo , Éter/metabolismo , Éteres/metabolismo
2.
FEMS Microbes ; 3: xtac021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37332513

RESUMO

Few strains of Dehalococcoides mccartyi harbour and express the vinyl chloride reductase (VcrA) that catalyzes the dechlorination of vinyl chloride (VC), a carcinogenic soil and groundwater contaminant. The vcrA operon is found on a Genomic Island (GI) and, therefore, believed to participate in horizontal gene transfer (HGT). To try to induce HGT of the vcrA-GI, we blended two enrichment cultures in medium without ammonium while providing VC. We hypothesized that these conditions would select for a mutant strain of D. mccartyi that could both fix nitrogen and respire VC. However, after more than 4 years of incubation, we found no evidence for HGT of the vcrA-GI. Rather, we observed VC-dechlorinating activity attributed to the trichloroethene reductase TceA. Sequencing and protein modelling revealed a mutation in the predicted active site of TceA, which may have influenced substrate specificity. We also identified two nitrogen-fixing D. mccartyi strains in the KB-1 culture. The presence of multiple strains of D. mccartyi with distinct phenotypes is a feature of natural environments and certain enrichment cultures (such as KB-1), and may enhance bioaugmentation success. The fact that multiple distinct strains persist in the culture for decades and that we could not induce HGT of the vcrA-GI suggests that it is not as mobile as predicted, or that mobility is restricted in ways yet to be discovered to specific subclades of Dehalococcoides.

3.
Environ Sci Process Impacts ; 22(3): 663-678, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159535

RESUMO

Organohalide respiring bacteria (OHRB) express reductive dehalogenases for energy conservation and growth. Some of these enzymes catalyze the reductive dehalogenation of chlorinated and brominated pollutants in anaerobic subsurface environments, providing a valuable ecosystem service. Dehalococcoides mccartyi strains have been most extensively studied owing to their ability to dechlorinate all chlorinated ethenes - most notably carcinogenic vinyl chloride - to ethene. The genomes of OHRB, particularly obligate OHRB, often harbour multiple putative reductive dehalogenase genes (rdhA), most of which have yet to be characterized. We recently sequenced and closed the genomes of eight new strains, increasing the number of available D. mccartyi genomes in NCBI from 16 to 24. From all available OHRB genomes, we classified predicted translations of reductive dehalogenase genes using a previously established 90% amino acid pairwise identity cut-off to identify Ortholog Groups (OGs). Interestingly, the majority of D. mccartyi dehalogenase gene sequences, once classified into OGs, exhibited a remarkable degree of synteny (gene order) in all genomes sequenced to date. This organization was not apparent without the classification. A high degree of synteny indicates that differences arose from rdhA gene loss rather than recombination. Phylogenetic analysis suggests that most rdhA genes have a long evolutionary history in the Dehalococcoidia with origin prior to speciation of Dehalococcoides and Dehalogenimonas. We also looked for evidence of synteny in the genomes of other species of OHRB. Unfortunately, there are too few closed Dehalogenimonas genomes to compare at this time. There is some partial evidence for synteny in the Dehalobacter restrictus genomes, but here too more closed genomes are needed for confirmation. Interestingly, we found that the rdhA genes that encode enzymes that catalyze dehalogenation of industrial pollutants are the only rdhA genes with strong evidence of recent lateral transfer - at least in the genomes examined herein. Given the utility of the RdhA sequence classification to comparative analyses, we are building a public web server () for the community to use, which allows users to add and classify new sequences, and download the entire curated database of reductive dehalogenases.


Assuntos
Chloroflexi , Ecossistema , Genoma Bacteriano , Halogenação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...