Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38774451

RESUMO

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
2.
Haematologica ; 109(3): 725-739, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317878

RESUMO

Certain subtypes of acute myeloid leukemia (AML) in children have inferior outcome, such as AML with translocation t(7;12)(q36;p13) leading to an MNX1::ETV6 fusion along with high expression of MNX1. We have identified the transforming event in this AML and possible ways of treatment. Retroviral expression of MNX1 was able to induce AML in mice, with similar gene expression and pathway enrichment to t(7;12) AML patient data. Importantly, this leukemia was only induced in immune incompetent mice using fetal but not adult hematopoietic stem and progenitor cells. The restriction in transforming capacity to cells from fetal liver is in alignment with t(7;12)(q36;p13) AML being mostly seen in infants. Expression of MNX1 led to increased histone 3 lysine 4 mono-, di- and trimethylation, reduction in H3K27me3, accompanied with changes in genome-wide chromatin accessibility and genome expression, likely mediated through MNX1 interaction with the methionine cycle and methyltransferases. MNX1 expression increased DNA damage, depletion of the Lin-/Sca1+/c-Kit+ population and skewing toward the myeloid lineage. These effects, together with leukemia development, were prevented by pre-treatment with the S-adenosylmethionine analog Sinefungin. In conclusion, we have shown the importance of MNX1 in development of AML with t(7;12), supporting a rationale for targeting MNX1 and downstream pathways.


Assuntos
Histonas , Leucemia Mieloide Aguda , Criança , Lactente , Humanos , Animais , Camundongos , Metiltransferases , Cromatina , S-Adenosilmetionina , Leucemia Mieloide Aguda/genética , Metilação , Fatores de Transcrição , Proteínas de Homeodomínio/genética
3.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900374

RESUMO

To survive chemotherapy, lymphoma cells can relocate to protective niches where they receive support from the non-malignant cells. The biolipid 2-arachidonoylglycerol (2-AG), an agonist for the cannabinoid receptors CB1 and CB2, is released by stromal cells in the bone marrow. To investigate the role of 2-AG in lymphoma, we analyzed the chemotactic response of primary B-cell lymphoma cells enriched from peripheral blood of twenty-two chronic lymphocytic leukemia (CLL) and five mantle cell lymphoma (MCL) patients towards 2-AG alone and/or to the chemokine CXCL12. The expression of cannabinoid receptors was quantified using qPCR and the protein levels visualized by immunofluorescence and Western blot. Surface expression of CXCR4, the main cognate receptor to CXCL12, was analyzed by flow cytometry. Phosphorylation of key downstream signaling pathways activated by 2-AG and CXCL12 were measured by Western blot in three MCL cell lines and two primary CLL samples. We report that 2-AG induces chemotaxis in 80% of the primary samples, as well as 2/3 MCL cell lines. 2-AG induced in a dose-dependent manner, the migration of JeKo-1 cell line via CB1 and CB2. 2-AG affected the CXCL12-mediated chemotaxis without impacting the expression or internalization of CXCR4. We further show that 2-AG modulated p38 and p44/42 MAPK activation. Our results suggest that 2-AG has a previously unrecognized role in the mobilization of lymphoma cells by effecting the CXCL12-induced migration and the CXCR4 signaling pathways, however, with different effects in MCL compared to CLL.

4.
Epigenetics ; 14(11): 1125-1140, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31216925

RESUMO

EZH2 is overexpressed in poor-prognostic chronic lymphocytic leukaemia (CLL) cases, acting as an oncogene; however, thus far, the EZH2 target genes in CLL have not been disclosed. In this study, using ChIP-sequencing, we identified EZH2 and H3K27me3 target genes in two prognostic subgroups of CLL with distinct prognosis and outcome, i.e., cases with unmutated (U-CLL, n = 6) or mutated IGHV genes (M-CLL, n = 6). While the majority of oncogenic pathways were equally enriched for EZH2 target genes in both prognostic subgroups, PI3K pathway genes were differentially bound by EZH2 in U-CLL versus M-CLL. The occupancy of EZH2 for selected PI3K pathway target genes was validated in additional CLL samples (n = 16) and CLL cell lines using siRNA-mediated EZH2 downregulation and ChIP assays. Intriguingly, we found that EZH2 directly binds to the IGF1R promoter along with MYC and upregulates IGF1R expression in U-CLL, leading to downstream PI3K activation. By investigating an independent CLL cohort (n = 96), a positive correlation was observed between EZH2 and IGF1R expression with higher levels in U-CLL compared to M-CLL. Accordingly, siRNA-mediated downregulation of either EZH2, MYC or IGF1R and treatment with EZH2 and MYC pharmacological inhibitors in the HG3 CLL cell line induced a significant reduction in PI3K pathway activation. In conclusion, we characterize for the first time EZH2 target genes in CLL revealing a hitherto unknown implication of EZH2 in modulating the PI3K pathway in a non-canonical, PRC2-independent way, with potential therapeutic implications considering that PI3K inhibitors are effective therapeutic agents for CLL.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Linfoide/genética , Transdução de Sinais , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...