Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
mBio ; 12(3): e0098821, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154418

RESUMO

Chagas' disease arises as a direct consequence of the lytic cycle of Trypanosoma cruzi in the mammalian host. While invasion is well studied for this pathogen, study of egress has been largely neglected. Here, we provide the first description of T. cruzi egress documenting a coordinated mechanism by which T. cruzi engineers its escape from host cells in which it has proliferated and which is essential for maintenance of infection and pathogenesis. Our results indicate that this parasite egress is a sudden event involving coordinated remodeling of host cell cytoskeleton and subsequent rupture of host cell plasma membrane. We document that host cells maintain plasma membrane integrity until immediately prior to parasite release and report the sequential transformation of the host cell's actin cytoskeleton from normal meshwork in noninfected cells to spheroidal cages-a process initiated shortly after amastigogenesis. Quantification revealed gradual reduction in F-actin over the course of infection, and using cytoskeletal preparations and electron microscopy, we were able to observe disruption of the F-actin proximal to intracellular trypomastigotes. Finally, Western blotting experiments suggest actin degradation driven by parasite proteases, suggesting that degradation of cytoskeleton is a principal component controlling the initiation of egress. Our results provide the first description of the cellular mechanism that regulates the lytic component of the T. cruzi lytic cycle. We show graphically how it is possible to preserve the envelope of host cell plasma membrane during intracellular proliferation of the parasite and how, in cells packed with amastigotes, differentiation into trypomastigotes may trigger sudden egress. IMPORTANCE Understanding how Trypanosoma cruzi interacts with host cells has been transformed by high-quality studies that have examined in detail the mechanisms of T. cruzi host cell invasion. In contrast, little is known about the latter stages of the parasite's lytic cycle: how parasites egress and thereby sustain round after round of infection. Our results show that once in the host cell cytosol and having undergone amastigogenesis, T. cruzi begins to alter the host cell cytoskeleton, remodeling normal F-actin meshworks into encapsulating spheroidal cages. Filamentous actin diminishes over the course of the lytic cycle, and just prior to egress, the filaments comprising the cages are severely degraded where adjacent to the parasites. We conclude that sudden egress follows breach of the containment afforded by the actin cytoskeleton and subsequent plasma membrane rupture-a process that when understood in molecular detail may serve as a target for future novel therapeutic interventions.


Assuntos
Citoesqueleto de Actina/fisiologia , Membrana Celular/patologia , Citoesqueleto/metabolismo , Citoesqueleto/parasitologia , Interações Hospedeiro-Parasita , Trypanosoma cruzi/fisiologia , Actinas/metabolismo , Animais , Membrana Celular/parasitologia , Doença de Chagas/parasitologia , Chlorocebus aethiops , Células Vero
2.
PLoS Pathog ; 17(4): e1009502, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826673

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas' disease. Infected cells with T. cruzi activate several responses that promote unbalance of reactive oxygen species (ROS) that may cause DNA damage that activate cellular responses including DNA repair processes. In this work, HeLa cells and AC16 human cardiomyocyte cell line were infected with T. cruzi to investigate host cell responses at genome level during parasites intracellular life cycle. In fact, alkaline sensitive sites and oxidized DNA bases were detected in the host cell genetic material particularly in early stages of infection. These DNA lesions were accompanied by phosphorylation of the histone H2Ax, inducing γH2Ax, a marker of genotoxic stress. Moreover, Poly [ADP-ribose] polymerase-1 (PARP1) and 8-oxoguanine glycosylase (OGG1) are recruited to host cell nuclei, indicating activation of the DNA repair process. In infected cells, chromatin-associated proteins are carbonylated, as a possible consequence of oxidative stress and the nuclear factor erythroid 2-related factor 2 (NRF2) is induced early after infection, suggesting that the host cell antioxidant defenses are activated. However, at late stages of infection, NRF2 is downregulated. Interestingly, host cells treated with glutathione precursor, N-acetyl cysteine, NRF2 activator (Sulforaphane), and also Benznidonazol (BNZ) reduce parasite burst significantly, and DNA damage. These data indicate that the balance of oxidative stress and DNA damage induction in host cells may play a role during the process of infection itself, and interference in these processes may hamper T. cruzi infection, revealing potential target pathways for the therapy support.


Assuntos
Doença de Chagas/parasitologia , Dano ao DNA , Interações Hospedeiro-Parasita , Estresse Oxidativo , Trypanosoma cruzi/fisiologia , Antioxidantes/metabolismo , Morte Celular , Linhagem Celular , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Regulação para Baixo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/patogenicidade
3.
PLoS Pathog, v. 17, n. 4, e1009502, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3655

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas’ disease. Infected cells with T. cruzi activate several responses that promote unbalance of reactive oxygen species (ROS) that may cause DNA damage that activate cellular responses including DNA repair processes. In this work, HeLa cells and AC16 human cardiomyocyte cell line were infected with T. cruzi to investigate host cell responses at genome level during parasites intracellular life cycle. In fact, alkaline sensitive sites and oxidized DNA bases were detected in the host cell genetic material particularly in early stages of infection. These DNA lesions were accompanied by phosphorylation of the histone H2Ax, inducing γH2Ax, a marker of genotoxic stress. Moreover, Poly [ADP-ribose] polymerase) and 8-oxoguanine glycosylase (OGG1) are recruited to host cell nuclei, indicating activation of the DNA repair process. In infected cells, chromatin-associated proteins are carbonylated, as a possible consequence of oxidative stress and the nuclear factor erythroid 2–related factor 2 (NRF2) is induced early after infection, suggesting that the host cell antioxidant defenses are activated. However, at late stages of infection, NRF2 is downregulated. Interestingly, host cells pretreated with glutathione precursor, N-acetyl cysteine, NRF2 activator (Sulforaphane), and also Benznidonazol (BNZ) reduce parasite burst significantly, and DNA damage. These data indicate that the balance of oxidative stress and DNA damage induction in host cells may play a role during the process of infection itself, and interference in these processes may hamper T. cruzi infection, revealing potential target pathways for the therapy support.

4.
Chem Biol Interact ; 332: 109296, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096056

RESUMO

Leishmaniasis is a parasitic neglected tropical disease and result in a broad spectrum of clinical manifestations, ranging from a single ulceration to a progressive and fatal visceral disease. Comprising a limited and highly toxic therapeutic arsenal, new treatments are urgently needed. Targeting delivery of drugs has been a promising approach for visceral leishmaniasis (VL). Phosphatidylserine-liposomes have demonstrated superior efficacy in VL, targeting intracellular parasites in host cells through macrophage scavenger receptors. In this work, we investigated the in vitro and in vivo efficacy of the antihelminthic drug nitazoxanide in a nanoliposomal formulation against Leishmania (L.) infantum. Physicochemical parameters of liposomes containing nitazoxanide (NTZ-LP) were determined by dynamic light scattering and small angle X-ray scattering. The efficacy of the formulation was verified in an intracellular amastigote model and in an experimental hamster model. Our findings showed that NTZ-LP was able to eliminate the amastigotes inside the host cell with an IC50 value of 16 µM. NTZ-LP was labelled a fluorescent probe and by spectrofluorimetry, we observed that the infected macrophages internalized similar levels of the drug to the uninfected cells. The confocal microscopy images confirmed the uptake and demonstrated a diffuse distribution of the NTZ-LP in the cytoplasm of Leishmania-infected macrophages, with the vesicles in a closer proximity to the parasites. For the in vivo efficacy, the liposomal NTZ-LP was administrated intraperitoneally to Leishmania-infected hamsters for 10 consecutive days at 2 mg/kg/day. By qPCR we demonstrated a reduction of the parasite burden by 82% and 50% in the liver (p < 0.05) and spleen (p < 0.05), respectively. NTZ (non-liposomal) was administered at 100 mg/kg/day per oral (p.o.) for the same period, but demonstrated no efficacy. This liposomal formulation ensured a targeting delivery of NTZ to the intracellular parasites, resulting in an good efficacy at a low dose in animals, and it may represent a new candidate therapy for VL.


Assuntos
Espaço Intracelular/parasitologia , Leishmania infantum/efeitos dos fármacos , Lipossomos/química , Nanopartículas/química , Fosfatidilserinas/metabolismo , Tiazóis/farmacologia , Animais , Antiprotozoários/farmacologia , Difusão Dinâmica da Luz , Feminino , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Masculino , Mesocricetus , Camundongos Endogâmicos BALB C , Nitrocompostos , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
5.
Genes (Basel) ; 11(9)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957642

RESUMO

Retrotransposon Hot Spot (RHS) is the most abundant gene family in Trypanosoma cruzi, with unknown function in this parasite. The aim of this work was to shed light on the organization and expression of RHS in T. cruzi. The diversity of the RHS protein family in T. cruzi was demonstrated by phylogenetic and recombination analyses. Transcribed sequences carrying the RHS domain were classified into ten distinct groups of monophyletic origin. We identified numerous recombination events among the RHS and traced the origins of the donors and target sequences. The transcribed RHS genes have a mosaic structure that may contain fragments of different RHS inserted in the target sequence. About 30% of RHS sequences are located in the subtelomere, a region very susceptible to recombination. The evolution of the RHS family has been marked by many events, including gene duplication by unequal mitotic crossing-over, homologous, as well as ectopic recombination, and gene conversion. The expression of RHS was analyzed by immunofluorescence and immunoblotting using anti-RHS antibodies. RHS proteins are evenly distributed in the nuclear region of T. cruzi replicative forms (amastigote and epimastigote), suggesting that they could be involved in the control of the chromatin structure and gene expression, as has been proposed for T. brucei.


Assuntos
Duplicação Gênica , Família Multigênica , Proteínas de Protozoários/genética , Recombinação Genética , Retroelementos , Trypanosoma cruzi/genética , Cromossomos , Genômica
6.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32817329

RESUMO

Enucleated cells or cytoplasts (cells whose nucleus is removed in vitro) represent an unexplored biological model for intracellular infection studies due to the abrupt interruption of nuclear processing and new RNA synthesis by the host cell in response to pathogen entry. Using enucleated fibroblasts hosting the protozoan parasite Leishmania amazonensis, we demonstrate that parasite multiplication and biogenesis of large parasitophorous vacuoles in which parasites multiply are independent of the host cell nucleus. Dual RNA sequencing of both host cytoplast and intracellular parasite transcripts identified host transcripts that are more preserved or degraded upon interaction with parasites and also parasite genes that are differentially expressed when hosted by nucleated or enucleated cells. Cytoplasts are suitable host cells, which persist in culture for more than 72 h and display functional enrichment of transcripts related to mitochondrial functions and mRNA translation. Crosstalk between nucleated host de novo gene expression in response to intracellular parasitism and the parasite gene expression to counteract or benefit from these host responses induces a parasite transcriptional profile favoring parasite multiplication and aerobic respiration, and a host-parasite transcriptional landscape enriched in host cell metabolic functions related to NAD, fatty acid, and glycolytic metabolism. Conversely, interruption of host nucleus-parasite cross talk by infection of enucleated cells generates a host-parasite transcriptional landscape in which cytoplast transcripts are enriched in phagolysosome-related pathway, prosurvival, and SerpinB-mediated immunomodulation. In addition, predictive in silico analyses indicated that parasite transcript products secreted within cytoplasts interact with host transcript products conserving the host V-ATPase proton translocation function and glutamine/proline metabolism. The collective evidence indicates parasite-mediated control of host cell transcripts half-life that is beneficial to parasite intracellular multiplication and escape from host immune responses. These findings will contribute to improved drug targeting and serve as database for L. amazonensis-host cell interactions.


Assuntos
Fibroblastos/parasitologia , Regulação da Expressão Gênica em Archaea/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Leishmania mexicana/parasitologia , Leishmania/fisiologia , Animais , Linhagem Celular , Camundongos , Transcriptoma
7.
Anticancer Agents Med Chem ; 19(3): 389-401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30417795

RESUMO

BACKGROUND: BRN2 transcription factor is associated with the development of malignant melanoma. The cytotoxic activities and cell death mechanism against B16F10-Nex2 cells were determined with synthetic peptide R18H derived from the POU domain of the BRN2 transcription factor. OBJECTIVE: To determine the cell death mechanisms and in vivo activity of peptide R18H derived from the POU domain of the BRN2 transcription factor against B16F10-Nex2 cells. METHODS: Cell viability was determined by the MTT method. C57Bl/6 mice were challenged with B16F10-Nex2 cells and treated with R18H. To identify the type of cell death, we used TUNEL assay, Annexin V and PI, Hoechst, DHE, and determination of caspase activation and cytochrome c release. Transmission electron microscopy was performed to verify morphological alterations after peptide treatment. RESULTS: Peptide R18H displayed antitumor activity in the first hours of treatment and the EC50% was calculated for 2 and 24h, being 0.76 ± 0.045 mM and 0.559 ± 0.053 mM, respectively. After 24h apoptosis was evident, based on DNA degradation, chromatin condensation, increase of superoxide anion production, phosphatidylserine translocation, activation of caspases 3 and 8, and release of extracellular cytochrome c in B16F10-Nex2 cells. The peptide cytotoxic activity was not affected by necroptosis inhibitors and treated cells did not release LDH in the extracellular medium. Moreover, in vivo antitumor activity was observed following treatment with peptide R18H. CONCLUSION: Peptide R18H from BRN2 transcription factor induced apoptosis in B16F10-Nex2 and displayed antitumor activity in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Homeodomínio/química , Melanoma/tratamento farmacológico , Melanoma/patologia , Fatores do Domínio POU/química , Peptídeos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
8.
Front Microbiol ; 9: 1341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013522

RESUMO

To complete its life cycle within the mammalian host, Trypanosoma cruzi, the agent of Chagas' disease, must enter cells. Trypomastigotes originating from the insect vector (metacyclic) or from infected cells (bloodstream/tissue culture-derived) are the classical infective forms of the parasite and enter mammalian cells in an actin-independent manner. By contrast, amastigotes originating from the premature rupture of infected cells or transformed from swimming trypomastigotes (designated extracellular amastigotes, EAs) require functional intact microfilaments to invade non-phagocytic host cells. Earlier work disclosed the key features of EA-HeLa cell interplay: actin-rich protrusions called 'cups' are formed at EA invasion sites on the host cell membrane that are also enriched in actin-binding proteins, integrins and extracellular matrix elements. In the past decades we described the participation of membrane components and secreted factors from EAs as well as the actin-regulating proteins of host cells involved in what we propose to be a phagocytic-like mechanism of parasite uptake. Thus, regarding this new perspective herein we present previously described EA-induced 'cups' as parasitic synapse since they can play a role beyond its architecture function. In this review, we focus on recent findings that shed light on the intricate interaction between extracellular amastigotes and non-phagocytic HeLa cells.

9.
Front Microbiol ; 9: 693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692765

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas' disease.

10.
Front Microbiol ; 9: 553, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662478

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas' disease, which affects 6-7 million people worldwide. Different strains of T. cruzi present specific genotypic and phenotypic characteristics that affect the host-pathogen interactions, and thus, the parasite has been classified into six groups (TcI to TcVI). T. cruzi infection presents two clinical phases, acute and chronic, both with distinct characteristics and important participation by the immune system. However, the specific contributions of parasite and host factors in the disease phases are not yet fully understood. The murine model for Chagas' disease is well-established and reproduces important features of the human infection, providing an experimental basis for the study of host lineages and parasite strains. Thus, we evaluated acute and chronic infection by the G (TcI) and CL (TcVI) strains of T. cruzi, which have distinct tropisms and infectivity, in two inbred mice lineages (C57BL/6 and BALB/c) that display variable degrees of susceptibility to different T. cruzi strains. Analysis of the parasite loads in host tissues by qPCR showed that CL strain established an infection faster than the G strain; at the same time, the response in BALB/c mice, although diverse in terms of cytokine secretion, was initiated earlier than that in C57BL/6 mice. At the parasitemia peak in the acute phase, we observed, either by confocal microscopy or by qPCR, that the infection was disseminated in all groups analyzed, with some differences concerning parasite tropism; at this point, all animals responded to infection by increasing the serum concentrations of cytokines. However, BALB/c mice seemed to better regulate the immune response than C57BL/6 mice. Indeed, in the chronic phase, C57BL/6 mice still presented exacerbated cytokine and chemokine responses. In summary, our results indicate that in these experimental models, the deregulation of immune response that is typical of chronic Chagas' disease may be due to control loss over pro- and anti-inflammatory cytokines early in the acute phase of the disease, depending primarily on the host background rather than the parasite strain.

11.
Front Microbiol ; 9: 360, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541069

RESUMO

This study evaluated the participation of host cell Rho-family GTPases and their effector proteins in the actin-dependent invasion by Trypanosoma cruzi extracellular amastigotes (EAs). We observed that all proteins were recruited and colocalized with actin at EA invasion sites in live or fixed cells. EA internalization was inhibited in cells depleted in Rac1, N-WASP, and WAVE2. Time-lapse experiments with Rac1, N-WASP and WAVE2 depleted cells revealed that EA internalization kinetics is delayed even though no differences were observed in the proportion of EA-induced actin recruitment in these groups. Overexpression of constitutively active constructs of Rac1 and RhoA altered the morphology of actin recruitments to EA invasion sites. Additionally, EA internalization was increased in cells overexpressing CA-Rac1 but inhibited in cells overexpressing CA-RhoA. WT-Cdc42 expression increased EA internalization, but curiously, CA-Cdc42 inhibited it. Altogether, these results corroborate the hypothesis of EA internalization in non-phagocytic cells by a phagocytosis-like mechanism and present Rac1 as the key Rho-family GTPase in this process.

12.
Front. Microbiol. ; 9: 693, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15260

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas' disease.

13.
Front Microbiol, v. 9, 693, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2505

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas' disease.

14.
Front Microbiol ; 8: 2230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209287

RESUMO

The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease. In mammalian hosts, T. cruzi alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs). Ezrin-radixin-moesin (ERM) are key proteins linking plasma membrane to actin filaments, the major host cell component responsible for EA internalization. Our results revealed that depletion of host ezrin and radixin but not moesin inhibited EAs invasion in HeLa cells. ERM are recruited and colocalize with F-actin at EA invasion sites as shown by confocal microscopy. Invasion assays performed with cells overexpressing ERM showed increased EAs invasion in ezrin and radixin but not moesin overexpressing cells. Finally, time-lapse experiments have shown altered actin dynamics leading to delayed EA internalization in ezrin and radixin depleted cells when compared to control or moesin depleted cells. Altogether, these findings show distinct roles of ERM during EAs invasion, possibly regulating F-actin dynamics and plasma membrane interplay.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29164071

RESUMO

Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for ß-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.


Assuntos
Doença de Chagas/imunologia , Doença de Chagas/patologia , Galectina 3/imunologia , Galectina 3/metabolismo , Imunidade Inata/imunologia , Trypanosoma cruzi/imunologia , Animais , Sobrevivência Celular , Doença de Chagas/parasitologia , Chlorocebus aethiops , Colágeno/análise , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose/imunologia , Fibrose/prevenção & controle , Galactosídeos , Galectina 3/genética , Coração , Interações Hospedeiro-Parasita , Macrófagos Peritoneais/parasitologia , Masculino , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia , Baço/imunologia , Trypanosoma cruzi/patogenicidade , Células Vero
16.
Front Microbiol ; 8: 1235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769876

RESUMO

In its hyphal form, Candida albicans invades epithelial and endothelial cells by two distinct mechanisms: active penetration and induced endocytosis. The latter is dependent on a reorganization of the host cytoskeleton (actin/cortactin recruitment), whilst active penetration does not rely on the host's cellular machinery. The first obstacle for the fungus to reach deep tissues is the epithelial barrier and this interaction is crucial for commensal growth, fungal pathogenicity and host defense. This study aimed to characterize in vitro epithelial HeLa cell invasion by four different isolates of C. albicans with distinct clinical backgrounds, including a C. albicans SC5314 reference strain. All isolates invaded HeLa cells, recruited actin and cortactin, and induced the phosphorylation of both Src-family kinases (SFK) and cortactin. Curiously, L3881 isolated from blood culture of a patient exhibited the highest resistance to oxidative stress, although this isolate showed reduced hyphal length and displayed the lowest cell damage and invasion rates. Collectively, these data suggest that the ability of C. albicans to invade HeLa cells, and to reach and adapt to the host's blood, including resistance to oxidative stress, may be independent of hyphal length.

17.
Front Microbiol ; 8: 1453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824583

RESUMO

Inositol phosphorylceramide (IPC), the major sphingolipid in the genus Leishmania but not found in mammals, is considered a potentially useful target for chemotherapy against leishmaniasis. Leishmania (Viannia) braziliensis is endemic in Latin America and causes American tegumentary leishmaniasis. We demonstrated that IPCs are localized internally in parasites, using a specific monoclonal antibody. Treatment with 5 µM myriocin (a serine palmitoyltransferase inhibitor) rendered promastigotes 8-fold less infective than controls in experimental hamster infection, as determined by number of parasites per inguinal lymph node after 8 weeks infection, suggesting the importance of parasite IPC or sphingolipid derivatives in parasite infectivity or survival in the host. IPC was isolated from promastigotes of three L. (V.) braziliensis strains and analyzed by positive- and negative-ion ESI-MS. The major IPC ions were characterized as eicosasphinganine and eicosasphingosine. Negative-ion ESI-MS revealed IPC ion species at m/z 778.6 (d20:1/14:0), 780.6 (d20:0/14:0), 796.6 (t20:0/14:0), 806.6 (d20:1/16:0), and 808.6 (d20:0/16:0). IPCs isolated from L. (V.) braziliensis and L. (L.) major showed significant differences in IPC ceramide composition. The major IPC ion from L. (L.) major, detected in negative-ion ESI-MS at m/z 780.6, was composed of ceramide d16:1/18:0. Our results suggest that sphingosine synthase (also known as serine palmitoyltransferase; SPT) in L. (V.) braziliensis is responsible for synthesis of a long-chain base of 20 carbons (d20), whereas SPT in L. (L.) major synthesizes a 16-carbon long-chain base (d16). A phylogenetic tree based on SPT proteins was constructed by analysis of sequence homologies in species of the Leishmania and Viannia subgenera. Results indicate that SPT gene position in L. (V.) braziliensis is completely separated from that of members of subgenus Leishmania, including L. (L.) major, L. (L.) infantum, and L. (L.) mexicana. Our findings clearly demonstrate sphingoid base differences between L. (V.) braziliensis and members of subgenus Leishmania, and are relevant to future development of more effective targeted anti-leishmaniasis drugs.

18.
PLoS Negl Trop Dis ; 11(2): e0005413, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28241012

RESUMO

BACKGROUND: Interleukin-32 (IL-32) is expressed in lesions of patients with American Tegumentary Leishmaniasis (ATL), but its precise role in the disease remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, silencing and overexpression of IL-32 was performed in THP-1-derived macrophages infected with Leishmania (Viannia) braziliensis or L. (Leishmania) amazonensis to investigate the role of IL-32 in infection. We report that Leishmania species induces IL-32γ, and show that intracellular IL-32γ protein production is dependent on endogenous TNFα. Silencing or overexpression of IL-32 demonstrated that this cytokine is closely related to TNFα and IL-8. Remarkably, the infection index was augmented in the absence of IL-32 and decreased in cells overexpressing this cytokine. Mechanistically, these effects can be explained by nitric oxide cathelicidin and ß-defensin 2 production regulated by IL-32. CONCLUSIONS: Thus, endogenous IL-32 is a crucial cytokine involved in the host defense against Leishmania parasites.


Assuntos
Citocinas/metabolismo , Interleucinas/metabolismo , Leishmania braziliensis/imunologia , Leishmania mexicana/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Óxido Nítrico/metabolismo , beta-Defensinas/metabolismo , Catelicidinas
19.
J Eukaryot Microbiol ; 64(4): 491-503, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27864857

RESUMO

The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.


Assuntos
Giardia lamblia/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Tubulina (Proteína)/metabolismo , Ciclo Celular , Técnicas de Silenciamento de Genes , Giardia lamblia/metabolismo , Espectrometria de Massas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Trofozoítos/fisiologia
20.
J. Eukaryot. Microbiol. ; 64(4): 491-503, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15123

RESUMO

The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, -tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...