Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6130, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033128

RESUMO

Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1, ETV1, CRKL, and ID4. Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC, on the same complex amplicons such as ecDNA. We characterized a MYC-ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Genômica , Oncogenes , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Receptor ErbB-2 , Humanos , Elementos Facilitadores Genéticos/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Genômica/métodos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
2.
Cancer Res ; 84(14): 2377-2389, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748784

RESUMO

Genome-wide association studies (GWAS) have identified more than a hundred single nucleotide variants (SNV) associated with the risk of gastroesophageal cancer (GEC). The majority of the identified SNVs map to noncoding regions of the genome. Uncovering the causal SNVs and genes they modulate could help improve GEC prevention and treatment. Herein, we used HiChIP against histone 3 lysine 27 acetylation (H3K27ac) to simultaneously annotate active promoters and enhancers, identify the interactions between them, and detect nucleosome-free regions (NFR) harboring potential causal SNVs in a single assay. The application of H3K27ac HiChIP in GEC relevant models identified 61 potential functional SNVs that reside in NFRs and interact with 49 genes at 17 loci. The approach led to a 67% reduction in the number of SNVs in linkage disequilibrium at these 17 loci, and at 7 loci, a single putative causal SNV was identified. One SNV, rs147518036, located within the promoter of the UDP-glucuronate decarboxylase 1 (UXS1) gene, seemed to underlie the GEC risk association captured by the rs75460256 index SNV. The rs147518036 SNV creates a GABPA DNA recognition motif, resulting in increased promoter activity, and CRISPR-mediated inhibition of the UXS1 promoter reduced the viability of the GEC cells. These findings provide a framework that simplifies the identification of potentially functional regulatory SNVs and target genes underlying risk-associated loci. In addition, the study implicates increased expression of the enzyme UXS1 and activation of its metabolic pathway as a predisposition to gastric cancer, which highlights potential therapeutic avenues to treat this disease. Significance: Epigenomic footprinting using a histone posttranslational modification targeted 3D genomics methodology elucidates functional noncoding sequence variants and their target genes at cancer risk loci.


Assuntos
Epigenômica , Neoplasias Esofágicas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Estudo de Associação Genômica Ampla/métodos , Epigenômica/métodos , Histonas/genética , Histonas/metabolismo , Linhagem Celular Tumoral
3.
Cell Genom ; 4(5): 100542, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38663407

RESUMO

Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single-cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We found that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.


Assuntos
Elementos Facilitadores Genéticos , Estrogênios , Regiões Promotoras Genéticas , Transcrição Gênica , Humanos , Cromatina/genética , Estrogênios/fisiologia , Regulação da Expressão Gênica , Aprendizado de Máquina , Análise de Célula Única
4.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38328209

RESUMO

Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1 , ETV1 , CRKL , and ID4 . Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC , on the same complex amplicons such as ecDNA. We characterized a MYC - ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC 's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.

5.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326311

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Proteômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Renais/genética , Cromatina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromossomos Humanos X/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína com Valosina/genética
6.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993565

RESUMO

Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We find that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.

7.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873234

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

8.
Nat Commun ; 12(1): 7139, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880227

RESUMO

Amplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3' noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression. Repression of e1 in SOX2-high cells causes collapse of the surrounding enhancers, remarkable reduction in SOX2 expression, and a global transcriptional change reminiscent of SOX2 knockout. The e1 enhancer is driven by a combination of transcription factors including SOX2 itself and the AP-1 complex, which facilitates recruitment of the co-activator BRD4. CRISPR-mediated activation of e1 in SOX2-low cells is sufficient to rebuild the e1-SOX2 loop and activate SOX2 expression. Our study shows that squamous cancers selectively amplify a predominant enhancer to drive SOX2 overexpression, uncovering functional links among enhancer activation, chromatin looping, and lineage-specific copy number amplifications of oncogenes.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Células Escamosas/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Elementos Facilitadores Genéticos , Epigenômica , Feminino , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA