Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2169: 27-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548816

RESUMO

Recent evidence has indicated that caveolins are localized at the base of primary cilia, which are microtubule-based sensory organelles present on the cell surface, and that Caveolin-1 (CAV1) plays important roles in regulating ciliary membrane composition and function. Here we describe methods to analyze the localization and function of CAV1 in primary cilia of cultured mammalian cells. These include methods for culturing and transfecting mammalian cells with a CAV1-encoding plasmid or small interfering RNA (siRNA), analysis of mammalian cells by immunofluorescence microscopy (IFM) with antibodies against ciliary markers and CAV1, as well as methods for analyzing ciliary CAV1 function in siRNA-treated cells by IFM and cell-based signaling assays.


Assuntos
Caveolina 1/metabolismo , Técnicas de Cultura de Células/métodos , Cílios/metabolismo , Microscopia de Fluorescência/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Caveolina 1/genética , Linhagem Celular , Células Cultivadas , Humanos , RNA Interferente Pequeno , Transdução de Sinais/genética
2.
Nat Commun ; 8: 14177, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134340

RESUMO

Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.


Assuntos
Caveolina 1/metabolismo , Cílios/fisiologia , Cinesinas/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Domínios Proteicos/fisiologia , Regulação para Cima , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27638178

RESUMO

Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor ß (TGF-ß) signaling. Further, we discuss how defects in the coordination of these pathways may be linked to ciliopathies.


Assuntos
Cílios/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Células 3T3-L1 , Animais , Centríolos/metabolismo , Endocitose , Genoma Humano , Complexo de Golgi/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
Methods Mol Biol ; 1454: 15-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27514913

RESUMO

A growing number of studies have used new generation technologies to characterize the protein constituents of cilia and centrosomes. This has led to the identification of a vast number of candidate ciliary or centrosomal proteins, whose subcellular localization needs to be investigated and validated. Here, we describe a simple and inexpensive method for analyzing the subcellular localization of candidate cilium- or centrosome-associated proteins, and we illustrate the utility as well as the pitfalls of this method by applying it to a group of ASH (ASPM, SPD-2, Hydin) domain-containing proteins, previously predicted to be cilia- or centrosome-associated proteins based on bioinformatic analyses. By generating plasmids coding for epitope-tagged full-length (FL) or truncated versions of the ASH domain-containing proteins TRAPPC8, TRAPPC13, NPHP4, and DLEC1, followed by expression and quantitative immunofluorescence microscopy (IFM) analysis in cultured human telomerase-immortalized retinal pigmented epithelial (hTERT-RPE1) cells, we could confirm that TRAPPC13 and NPHP4 are highly enriched at the base of primary cilia, whereas DLEC1 seems to associate specifically with motile cilia. Results for TRAPPC8 were inconclusive since epitope-tagged TRAPPC8 fusion proteins were unstable/degraded in cells, emphasizing the need for combining IFM analysis with western blotting in such studies. The method described should be applicable to other candidate ciliary or centrosomal proteins as well.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Estudos de Associação Genética , Domínios Proteicos , Animais , Western Blotting , Linhagem Celular , Clonagem Molecular , DNA Complementar , Expressão Gênica , Humanos , Microscopia de Fluorescência , Transfecção
5.
Development ; 141(20): 3966-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25294941

RESUMO

Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.


Assuntos
Cílios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Fatores de Transcrição/fisiologia , Animais , Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas do Citoplasma , Dano ao DNA , Dineínas/metabolismo , Marcadores Genéticos , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Cilia ; 3: 6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018876

RESUMO

BACKGROUND: Assembly of primary cilia relies on vesicular trafficking towards the cilium base and intraflagellar transport (IFT) between the base and distal tip of the cilium. Recent studies have identified several key regulators of these processes, including Rab GTPases such as Rab8 and Rab11, the Rab8 guanine nucleotide exchange factor Rabin8, and the transport protein particle (TRAPP) components TRAPPC3, -C9, and -C10, which physically interact with each other and function together with Bardet Biedl syndrome (BBS) proteins in ciliary membrane biogenesis. However, despite recent advances, the exact molecular mechanisms by which these proteins interact and target to the basal body to promote ciliogenesis are not fully understood. RESULTS: We surveyed the human proteome for novel ASPM, SPD-2, Hydin (ASH) domain-containing proteins. We identified the TRAPP complex subunits TRAPPC8, -9, -10, -11, and -13 as novel ASH domain-containing proteins. In addition to a C-terminal ASH domain region, we predict that the N-terminus of TRAPPC8, -9, -10, and -11, as well as their yeast counterparts, consists of an α-solenoid bearing stretches of multiple tetratricopeptide (TPR) repeats. Immunofluorescence microscopy analysis of cultured mammalian cells revealed that exogenously expressed ASH domains, as well as endogenous TRAPPC8, localize to the centrosome/basal body. Further, depletion of TRAPPC8 impaired ciliogenesis and GFP-Rabin8 centrosome targeting. CONCLUSIONS: Our results suggest that ASH domains confer targeting to the centrosome and cilia, and that TRAPPC8 has cilia-related functions. Further, we propose that the yeast TRAPPII complex and its mammalian counterpart are evolutionarily related to the bacterial periplasmic trafficking chaperone PapD of the usher pili assembly machinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...