Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37612859

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated. OBJECTIVES: The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells. METHODS: AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GC-MS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis. CONCLUSION: C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.

2.
Fitoterapia ; 169: 105555, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295757

RESUMO

Several plant secondary metabolites are used in the production of different pharmaceuticals based on their biological activities. The conservation and sustainable use of medicinal plants is important for the industrial production of plant-based medicines. Different cryopreservation methods are used for long-term culture preservation, which allows fast regeneration of the preserved plant material with the maintenance of its primary original traits. These methods could ensure the sustainable indefinite supply of plant tissues for theoretically unlimited periods of time, and have gained considerable attention in recent years. It is important to assess the recovery rate and the genetic stability of the recovered plant tissues after cryopreservation because cryopreservation efficiency differs among plant tissues and species. This review lays particular emphasis on the pharmaceutical applications of plant secondary metabolites that are produced through tissue culture approaches, highlighting the methods used for their cryopreservation, as well as their recovery and genetic stability.


Assuntos
Plantas Medicinais , Estrutura Molecular , Criopreservação
3.
Plants (Basel) ; 11(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015423

RESUMO

Tephrosia is widely distributed throughout tropical, subtropical, and arid regions. This genus is known for several biological activities, including its anti-Candida activity, which is mainly attributed to prenylated flavonoids. The biological activities of most Tephrosia species have been studied, except T. apollinea. This study was conducted to investigate the underlying anti-Candida activity of T. apollinea, wildly grown in the United Arab Emirates (UAE). The T. apollinea plant was collected, dried, and the leaves were separated. The leaves were ground and extracted. The dried extract was subjected to successive chromatography to identify unique phytochemicals with a special pharmacological activity. The activity of the compound was validated by homology modeling and molecular docking studies. A novel steroidal compound (ergosta-6, 8(14), 22, 24(28)-tetraen-3-one) was isolated and named TNS. In silico target identification of TNS revealed a high structural similarity with the Candida 14-α-demethylase enzyme substrate. The compound exhibited a significant anti-Candida activity, specifically against the multi-drug-resistant Candida auris at MIC50, 16 times less than the previously reported prenylated flavonoids and 5 times less than the methanol extract of the plant. These findings were supported by homology modeling and molecular docking studies. TNS may represent a new class of Candida 14-α-demethylase inhibitors.

4.
Plants (Basel) ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807584

RESUMO

The occurrence and persistence of pharmaceuticals in the food chain, particularly edible crops, can adversely affect human and environmental health. In this study, the impacts of the absorption, translocation, accumulation, and degradation of paracetamol in different organs of the leafy vegetable crop spinach (Spinacia oleracea) were assessed under controlled laboratory conditions. Spinach plants were exposed to 50 mg/L, 100 mg/L, and 200 mg/L paracetamol in 20% Hoagland solution at the vegetative phase in a hydroponic system. Exposed plants exhibited pronounced phytotoxic effects during the eight days trial period, with highly significant reductions seen in the plants' morphological parameters. The increasing paracetamol stress levels adversely affected the plants' photosynthetic machinery, altering the chlorophyll fluorescence parameters (Fv/Fm and PSII), photosynthetic pigments (Chl a, Chl b and carotenoid contents), and composition of essential nutrients and elements. The LC-MS results indicated that the spinach organs receiving various paracetamol levels on day four exhibited significant uptake and translocation of the drug from roots to aerial parts, while degradation of the drug was observed after eight days. The VITEK® 2 system identified several bacterial strains (e.g., members of Burkhulderia, Sphingomonas, Pseudomonas, Staphylococcus, Stenotrophomonas and Kocuria) isolated from spinach shoots and roots. These microbes have the potential to biodegrade paracetamol and other organic micro-pollutants. Our findings provide novel insights to mitigate the risks associated with pharmaceutical pollution in the environment and explore the bioremediation potential of edible crops and their associated microbial consortium to remove these pollutants effectively.

5.
Antioxidants (Basel) ; 11(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453341

RESUMO

Citrullus colocynthis (Cucurbitaceae) is an important medicinal plant traditionally used in the United Arab Emirates (UAE). In a recent study, it has been reported that different individuals of the same population of C. colocynthis, growing in the hot arid desert of the UAE, exhibited variations in their fruit size, color, and stripe pattern. In addition, these plants differed genetically, and their seeds showed variation in size, color, and germination behavior (hereinafter, these individuals are referred to as accessions). In the present study, the total phenolic content (TPC) and antioxidant activity of different fruit parts (rinds, pulps, and seeds) of three different accessions with significant genetic variations, from a single C. colocynthis population, were assessed in response to different seasonal environments. Green fruits were collected in summer and winter from three accessions growing in the botanic garden of the University of Sharjah, UAE. Methanolic extracts from different fruit parts were prepared. The TPC was qualitatively determined by a Folin-Ciocalteu assay, while the antioxidant capacity was analyzed using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability. The metabolic profiling of the antioxidant metabolites was determined using a gas chromatograph coupled to mass spectrometry (GC-MS), associated with a literature search. The results showed that the TPC and the DPPH free radical scavenging activity varied between seasons, accessions, and fruit parts. The highest phenolics were in rinds, but the highest antioxidant activities were in seeds during the summer, reflecting the role of these compounds in protecting the developed seeds from harsh environmental conditions. The metabolomic analysis revealed the presence of 28 metabolites with significant antioxidant activities relevant to fruit parts and season. Collectively, the formation of phenolics and antioxidant activity in different fruit parts is environmentally and genetically dependent.

6.
Physiol Plant ; 173(4): 1695-1714, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741316

RESUMO

Salsola drummondii is a perennial habitat-indifferent halophyte growing in saline and nonsaline habitats of the Arabian hyperarid deserts. It offers an invaluable opportunity to examine the molecular mechanisms of salt tolerance. The present study was conducted to elucidate these mechanisms through transcriptome profiling of seedlings grown from seeds collected in a saline habitat. The Illumina Hiseq 2500 platform was employed to sequence cDNA libraries prepared from shoots and roots of nonsaline-treated plants (controls) and plants treated with 1200 mM NaCl. Transcriptomic comparison between salt-treated and control samples resulted in 17,363 differentially expressed genes (DEGs), including 12,000 upregulated genes (7870 in roots, 4130 in shoots) and 5363 downregulated genes (4258 in roots and 1105 in shoots). The majority of identified DEGs are known to be involved in transcription regulation (79), signal transduction (82), defense metabolism (101), transportation (410), cell wall metabolism (27), regulatory processes (392), respiration (85), chaperoning (9), and ubiquitination (98) during salt tolerance. This study identified potential genes associated with the salt tolerance of S. drummondii and demonstrated that this tolerance may depend on the induction of certain genes in shoot and root tissues. These gene expressions were validated using reverse-transcription quantitative PCR, the results of which were consistent with transcriptomics results. To the best of our knowledge, this is the first study providing genetic information on salt tolerance mechanisms in S. drummondii.


Assuntos
Salsola , Plantas Tolerantes a Sal , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Plantas Tolerantes a Sal/genética , Transcriptoma/genética
8.
Biol Trace Elem Res ; 194(2): 560-569, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31267442

RESUMO

Over recent years, metal nanoparticles have largely been investigated due to their potential activities. This study focused on synthesizing silver nanoparticles (AgNPs) using the desert plant Cyperus conglomeratus, which is the most abundant species on the sand dunes in the UAE, and their anticancer activity. The synthesized AgNPs were characterized using UV-visible spectra, X-ray diffraction, energy dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, and scanning electron microscope. The results showed that the AgNPs are monodispersed and mostly spherical in shape. The cytotoxicity effects were investigated against breast cancer cells MCF-7 and normal fibroblast using MTT assay which showed selective cytotoxicity against MCF-7 with an IC50 at 5 µg/mL but not fibroblast. Moreover, the apoptotic effects were confirmed using annexin V-FITC-PI double staining kit and real-time PCR for apoptotic genes. Therefore, our results revealed potential anticancer applications of the C. conglomeratus biosynthesized silver nanoparticles.


Assuntos
Antineoplásicos , Neoplasias da Mama , Cyperus , Nanopartículas Metálicas , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Nanomaterials (Basel) ; 9(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805737

RESUMO

Nanoparticle (NP) synthesis by biological systems is more cost-effective, safe, and environmentally friendly when compared to currently used chemical and physical methods. Although many studies have utilized different plant extracts to synthesize NPs, few studies have incorporated living plants. In this study, silver nanoparticles (AgNPs) were synthesized exogenously by Tephrosia apollinea living plant system under the combined stresses of silver nitrate and different levels of drought stress simulated by Polyethylene glycol (PEG) (0, -0.1, -0.2, and -0.4 MPa for three and six days). Biomass, cell death, and H2O2 content were evaluated to determine the toxicological effect of the treatments on the plant. More severe effects were detected in day 6 plants compared to day 3 plants, and at higher drought levels. UV-visible spectrum, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy were used to detect and characterize the T. apollinea synthesized NPs. The shapes of the NPs were spherical and cubic with different phytochemicals being the possible capping agents. Broth microdilution was used to determine the antimicrobial activity of the NPs against Escherichia coli and Staphylococcus aureus. In this case, antimicrobial activity increased at higher PEG concentrations. Bactericidal effects were observed against E. coli, while only bacteriostatic effects were detected against S. aureus.

10.
Plants (Basel) ; 8(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484325

RESUMO

Several studies have assessed the function and significance of the presence of dead, hardened husks on germination and seedling growth in several grass species and reached to inconsistent results. Here, we assess the roles of husks (dead lemma and palea) and an inner membrane surrounding the grains on germination behaviour and seedling growth of Brachypodium hybridum, one of three species of the genetic model B. distachyon complex, in an arid mountain of Arabia. The interactive effects between temperature and the incubation light were assessed on germination of husked and dehusked-demembraned grains. Germination and seedling growth were assessed for different combinations of grain treatments (soaked and non-soaked husked, dehusked-membraned and dehusked-demembraned). Dehusked-demembraned grains were also germinated in different dormancy regulating compounds (DRCs) and light qualities (light, dark and different red: far red [R: FR] ratios). The results indicated an insignificant difference between husked and dehusked-membraned grains on final germination and the germination rate index (GRI), with the former producing significantly bigger seedlings. Removal of the inner-membrane resulted in a significant reduction in all traits. Soaking grains in water resulted in significant enhancements in germination and seedling growth of only husked grains. Husked-membraned and demembraned grains germinated more significantly and faster at lower rather than higher temperatures. None of different concentrations of several DRCs succeeded in enhancing final germination of dehusked-demembraned grains. Red-rich light significantly enhanced germination of dehusked-membraned grains in comparison to other light qualities. It could be concluded that the role of husks is to mainly enhance seedling growth, while the major role of the membrane is to increase final germination. The ability of red-rich light in enhancing the germination of dehusked-membraned but not dehusked-demembraned grains suggest a role for the inner membrane in regulating dormancy through differential filtering of light properties.

11.
Int J Phytoremediation ; 21(12): 1254-1262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134813

RESUMO

Calotropis procera is a perennial big shrub that has the potential to accumulate high concentrations of heavy metals. Metal sequestration in old organs has been considered as a mechanism for plant survival in polluted soils. The aim of the present study was to assess the role of the old leaves as a sink for HMs accumulation in C. procera. Two instruments were used: atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) microscopy. Soil and plant samples were collected from around one of the worst congested traffic areas in the United Arab Emirates (UAE). Samples from roots, stem, and green and old leaves were prepared and analyzed by both instruments. Calotropis procera was able to concentrate Fe, Mn, Sr, and Zn in the roots, but their translocation to stem and green leaves was low. Old leaves had greater ability to accumulate significantly higher concentrations of different metals, especially Fe and Sr, than other parts of the plants, indicating that C. procera uses these metabolically less-active leaves as sinks for heavy metals. Fe and Sr attained higher bioconcentration and accumulation values, compared to Zn and Mn. There were significant positive correlations between XRF and AAS for all elements in the different organs.


Assuntos
Calotropis , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Folhas de Planta
12.
Plants (Basel) ; 8(1)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646494

RESUMO

Engineered metal nanoparticles have been widely used in several applications that may lead to increased exposure to the environment. In this study, we assessed the phytotoxic effect of various concentrations of copper nanoparticles CuNP, (200, 400 and 800 mg/L) on coriander (Coriandrum sativum) plants grown hydroponically. C. sativum plants treated with CuNP demonstrated decreased biomass and root length in comparison to control untreated plants. Additionally, decreased levels of photosynthetic pigments (chlorophyll a and b) were also seen in C. sativum plants treated with CuNP, as well as damage to the C. sativum root plasma membrane as demonstrated by Evan's blue dye and increased electrolyte leakage. Moreover, our results exhibited increased levels of H2O2 and MDA on C. Sativum plants treated with CuNP. X-Ray Fluorescence (XRF) analysis confirmed that C. sativum treated with CuNP accumulated the latter in plant root tissues. Random amplified polymorphic DNA (RAPD) analysis confirmed the genotoxic effect of CuNP, which altered the C. sativum genome. This was shown by the different banding pattern of RAPD. Overall, our results exhibited that CuNP is toxic to C. sativum plants.

13.
Front Plant Sci ; 9: 872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061904

RESUMO

With the increased use of metal nanoparticles (NPs), their access to the food chain has become a main concern to scientists and holds controversial social implications. This research particularly sheds light on copper nanoparticles (CuNP), as they have been commonly used in several industries nowadays. In this study, we investigated the phytotoxicity of CuNP on cucumber (Cucumis sativus) plants grown hydroponically. Atomic Absorption Spectroscopy (AAS), X-Ray Fluorescence (XRF), and Scanning Electron Microscopy (SEM) analysis confirmed that C. sativus treated with CuNP accumulated CuNP in the plant tissues, with higher levels in roots, with amounts that were concentration dependent. Furthermore, genotoxicity was assessed using Random amplified polymorphic DNA (RAPD) technique, and our results showed that CuNP caused genomic alterations in C. sativus. Phenotypical, physiological, and biochemical changes were assessed by determining the CuNP treated plant's total biomass, chlorophyll, H2O2 and MDA contents, and electrolyte leakage percentage. The results revealed notable adverse phenotypical changes along with decreased biomass and decreased levels of the photosynthetic pigments (Chlorophyll a and b) in a concentration-dependent manner. Moreover, CuNP induced damage to the root plasma membrane as determined by the increased electrolyte leakage. A significant increase in H2O2 and MDA contents were detected in C. sativus CuNP treated plants. Additionally, copper-zinc superoxide dismutase (Cu-Zn SOD) gene expression was induced under CuNP treatment. Overall, our results demonstrated that CuNP of 10-30 nm size were toxic to C. sativus plants. This finding will encourage the safe production and disposal NPs. Thus, reducing nano-metallic bioaccumulation into our food chain through crop plants; that possesses a threat to the ecological system.

14.
Physiol Mol Biol Plants ; 24(4): 521-533, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042610

RESUMO

The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.

15.
Recent Pat Food Nutr Agric ; 9(1): 55-64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29629668

RESUMO

BACKGROUND: Commercially available herbal and medicinal plants-based products are susceptible to substitution or contamination with other unlabeled or undesired materials. This will reduce the quality of the product, and may lead to intoxication and allergy. METHODS: DNA barcoding is a molecular technology that allows the identification of plant materials at the species level, by sequencing short stretches of standardized gene sequences from nuclear or organelle genome in an easy, rapid, accurate and cost-effective manner. The aim of this research is to apply DNA barcoding to investigate the authenticity of commercially available herbal and medicinal plant-based products within the UAE markets. A total of 30 samples were analyzed, covering six different herbal products (thyme, cardamom, anise, basil, turmeric, and ginger), obtained in fresh and dried forms. DNA was extracted and three barcode loci including (rbcL), (matK) and (ITS) were amplified, sequenced and analyzed by BLAST. RESULTS: In terms of amplification efficiency, the results suggest that rbcL is the most suitable marker for species identification giving 75% of successful amplification, followed by ITS with 66.67%, whereas matK had the lowest with 18.52%. Adulteration was detected in two samples, ginger powder and dry thyme leave samples. The adulterants were from Triticum and Oryza genera. CONCLUSION: Clearly, the results from this report provide evidence that DNA barcoding technique is efficient in the recognition of commercial plant products. Thus, it can be considered as a fast, effective, and reliable method to detect adulteration in plant-based products in the UAE market.


Assuntos
Código de Barras de DNA Taxonômico , Contaminação de Medicamentos , Plantas Medicinais/genética , DNA de Plantas , Humanos , Patentes como Assunto , Controle de Qualidade , Reprodutibilidade dos Testes , Emirados Árabes Unidos
16.
Front Plant Sci ; 9: 1929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30719028

RESUMO

The Arabian Peninsula is known to have a comprehensive and rich endowment of unique and genetically diverse plant genetic resources. Analysis and conservation of biological diversity is a crucial issue to the whole Arabian Peninsula. The rapid and accurate delimitation and identification of a species is crucial to genetic diversity analysis and the first critical step in the assessment of distribution, population abundance and threats related to a particular target species. During the last two decades, classical strategies of evaluating genetic variability, such as morphology and physiology, have been greatly complemented by phylogenetic, taxonomic, genetic diversity and breeding research molecular studies. At present, initiatives are taking place around the world to generate DNA barcode libraries for vascular plant flora and to make these data available in order to better understand, conserve and utilize biodiversity. The number of herbarium collection-based plant evolutionary genetics and genomics studies being conducted has been increasing worldwide. The herbaria provide a rich resource of already preserved and identified material, and these as well as freshly collected samples from the wild can be used for creating a reference DNA barcode library for the vascular plant flora of a region. This review discusses the main molecular and genomic techniques used in plant identification and biodiversity analysis. Hence, we highlight studies emphasizing various molecular techniques undertaken during the last 10 years to study the plant biodiversity of the Arabian Peninsula. Special emphasis on the role of DNA barcoding as a powerful tool for plant biodiversity analysis is provided, along with the crucial role of herbaria in creating a DNA barcode library.

17.
Crit Rev Food Sci Nutr ; 58(11): 1791-1807, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28272908

RESUMO

Today, the dramatic changes in types of food consumed have led to an increased burden of chronic diseases. Therefore, the emphasis of food research is not only to ensure quality food that can supply adequate nutrients to prevent nutrition related diseases, but also to ensure overall physical and mental-health. This has led to the concept of functional foods and nutraceuticals (FFNs), which can be ideally produced and delivered through plants. Metabolomics can help in getting the most relevant functional information, and thus has been considered the greatest -OMICS technology to date. However, metabolomics has not been exploited to the best potential in plant sciences. The technology can be leveraged to identify the health promoting compounds and metabolites that can be used for the development of FFNs. This article reviews (i) plant-based FFNs-related metabolites and their health benefits; (ii) use of different analytic platforms for targeted and non-targeted metabolite profiling along with experimental considerations; (iii) exploitation of metabolomics to develop FFNs in plants using various biotechnological tools; and (iv) potential use of metabolomics in plant breeding. We have also provided some insights into integration of metabolomics with latest genome editing tools for metabolic pathway regulation in plants.


Assuntos
Biotecnologia , Suplementos Nutricionais/análise , Alimento Funcional/análise , Genoma de Planta , Metabolômica , Alcaloides/análise , Bases de Dados Factuais , Ácidos Graxos/análise , Humanos , Compostos Fitoquímicos/análise , Plantas/química , Plantas Geneticamente Modificadas/genética , Polifenóis/análise , Terpenos/análise
18.
Pharmacogn Rev ; 11(22): 104-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989245

RESUMO

Candida is a serious life-threatening pathogen, particularly with immunocompromised patients. Candida infections are considered as a major cause of morbidity and mortality in a broad range of immunocompromised patients. Candida infections are common in hospitalized patients and elderly people. The difficulty to eradicate Candida infections is owing to its unique switch between yeast and hyphae forms and more likely to biofilm formations that render resistance to antifungal therapy. Plants are known sources of natural medicines. Several plants show significant anti-Candida activities and some of them have lower minimum inhibitory concentration, making them promising candidates for anti-Candida therapy. However, none of these plant products is marketed for anti-Candida therapy because of lack of sufficient information about their efficacy, toxicity, and kinetics. This review revises major plants that have been tested for anti-Candida activities with recommendations for further use of some of these plants for more investigation and in vivo testing including the use of nanostructure lipid system.

19.
Comput Biol Chem ; 71: 20-31, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28961510

RESUMO

The Egyptian flora is rich with a large number of Triticum plants, which are very difficult to discriminate between in the early developmental stages. This study assesses the significance of using two DNA Barcoding loci (matK and rbcL) in distinguishing between 18 different Triticum accessions in Egypt. We isolated and sequenced 15 rbcL and six matK fragments, but our analysis of the resultant sequences demonstrated a limited ability of matK and rbcL in distinguishing between Triticum accessions. Therefore, we pursued a bioinformatics approach to determine the most useful loci which may be used as DNA barcodes for the Triticum spp. We obtained the 10 available chloroplast genomes of the 10 Triticum species and sub-species from NCBI, and performed chloroplast genome-wide analysis to find the potential barcode loci. A total of 134 chloroplast genes, gene combinations, intergenic regions and intergenic region combinations were tested using a Tree-based method. We were unable to discriminate between Triticum species by using chloroplast genes, gene combinations and intergenic regions. However, a combination of the intergenic region (trnfM-trnT) with either (trnD-psbM), (petN-trnC), (matK-rps16) or (rbcL-psaI) demonstrated a very high discrimination capacity, suggesting their utilization as DNA barcodes for the Triticum plants. Furthermore, our novel DNA barcodes demonstrated high discrimination capacity for other Poaceae members.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Genoma de Cloroplastos/genética , Triticum/genética , Biologia Computacional
20.
Appl Microbiol Biotechnol ; 101(20): 7523-7533, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28918530

RESUMO

Taxol is an anticancer identified in both endophytic fungus and its host plant. Plant Taxol is a diterpenoid with geranylgeranyl diphosphate (GGPP) mediates the biosynthesis of its terpenoid moiety. Previous report has suggested that fungal Taxol may require terpenoid pathway for its biosynthesis. Here in this study, feeding a Taxol-producing endophytic fungus (Paraconiothyrium SSM001) with terpenoid precursors including isopentenyl pyrophosphate (IPP, isoprene) and GGPP enhanced Taxol production threefold and fivefold, respectively, compared to the control. Thus, we assumed that increasing the terpenoid pool size in particular GGPP by introducing a new copy number of GGPPS particularly from a Taxol-producing plant might increase the production level of fungal Taxol. Agrobacterium-mediated integration of Taxus canadensis geranylgeranyl diphosphate synthase (GGPPS) gene into the Paraconiothyrium SSM001 genome was successful and increased the terpenoid pool size indicated by an increase in carotenoid level and orange to red coloration of some GGPPS-transformed SSM001 colonies. Furthermore, the integration improved the level of Taxol production threefold. Feeding a GGPPS-transformed SSM001 fungus with a GGPP precursor increased the expression level of GGPPS transcript and Taxol production. The successful increase in both terpenoid and Taxol production levels due to GGPPS gene integration into the fungal genome might be a step forward in manipulating Taxol-producing endophytic fungi. Future control of the transformation time and the manipulation of the phenolic pathway could maximize the production level.


Assuntos
Antineoplásicos/metabolismo , Ascomicetos/metabolismo , Farnesiltranstransferase/metabolismo , Engenharia Metabólica , Paclitaxel/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Ascomicetos/genética , Butadienos/metabolismo , Farnesiltranstransferase/genética , Hemiterpenos/metabolismo , Pentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Taxus/enzimologia , Taxus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...