Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169721, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171461

RESUMO

The textile industry is one of the most chemical-intensive processes, resulting in the unquestionable pollution of more than a quarter of the planet's water bodies. The high recalcitrant properties of some these pollutants resulted on the development of treatment technologies looking at the larger removal efficiencies, due to conventional systems are not able to completely remove them in their effluents. However, safeguarding the environment also implies taking into account indirect pollution from the use of chemicals and energy during treatment. On the other hand, the emerged technologies need to be economically attractive for investors and treatment managers. Therefore, the costs should be kept under control. For this reason, the present study focuses on a comparative Life Cycle Assessment and Life Cycle Costing of four scale-up scenarios aiming at mono and di-azo reactive dyes removal from textile wastewater. Two reactors (sequencing batch reactor and two-phase partitioning) were compared for different reaction environments (i.e., single anaerobic and sequential anaerobic-aerobic) and conditions (different pH, organic loading rates and use of polymer). In accordance with the results of each scenario, it was found that the three technical parameters leading to a change in the environmental profiles were the removal efficiency of the dyes, the type of dye eliminated, and the pollutant influent concentration. The limitation of increasing organic loading rates related to the biomass inhibition could be overcame through the use of a novel two-phased partitioning bioreactor. The use of a polymer at this type of system may help restore the technical performance (84.5 %), reducing the toxic effects of effluents and consequently decreasing the environmental impact. In terms of environmental impact, this is resulting into a reduction of the toxic effects of textile effluents in surface and marine waters compared to the homologous anaerobic-aerobic treatment in a sequencing batch reactor. However, the benefits achieved for the nature comes with an economic burden related to the consumption of the polymer. It is expected that the cost of investment of the treatment with the two-phase partitioning bioreactor rises 0.6-8.3 %, depending on market prices, compared to the other analyzed sequential anaerobic-aerobic technologies. On the other side, energy and chemical consumption did not prove to be limiting factors for economic feasibility.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Corantes , Compostos Azo , Polímeros , Reatores Biológicos , Têxteis , Eliminação de Resíduos Líquidos/métodos
2.
Sci Total Environ ; 806(Pt 4): 150892, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653456

RESUMO

Landfill leachate is a highly polluted and toxic waste stream harmful to the environment and human health, its biological treatment, even if challenging, offers the opportunity of recovering valuable resources. In this study, we propose the application of an extractive membrane bioreactor equipped with a polymeric tubing, made of Hytrel, as an innovative device able to remove specific organic toxic compounds of the leachate and, at the same time, to produce an effluent rich in valuable chemicals suitable for recovery. The leachate treatment consists in a two-step process: the extraction of specific toxic compounds through the polymeric tubing based on the affinity with the polymer, and their subsequent biodegradation in controlled conditions in the bulk phase of the extractive membrane bioreactor, thus avoiding the direct contact of the microbial consortium with the toxic leachate. Three synthetic streams simulating leachates produced by landfills of typical industrial/hazardous waste, mixed municipal and industrial solid waste, and oil shale industry waste, whose toxic fraction is mainly constituted by phenolic compounds, have been tested. Successful performance was achieved in all the tested conditions, with high removal (≥98%) and biodegradation efficiencies (89-95%) of the toxic compounds. No mass transfer limitations across the tubing occurred during the operation and a marginal accumulation (in the range of 4-7%) into the polymer has been observed. Furthermore, volatile fatty acids and inorganic compounds contained in the leachates were fully recovered in the treated effluent. Feasibility study confirmed the applicability of the proposed bioreactor as a powerful technology able to achieve high toxic removal efficiency in leachate treatment and facilitate resource recovery.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Reatores Biológicos , Humanos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
3.
Appl Microbiol Biotechnol ; 105(6): 2195-2224, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33630152

RESUMO

Anaerobic biodegradation of toxic compounds found in industrial wastewater is an attractive solution allowing the recovery of energy and resources but it is still challenging due to the low kinetics making the anaerobic process not competitive against the aerobic one. In this review, we summarise the present state of knowledge on the anaerobic biodegradation process for phenol, a typical target compound employed in toxicity studies on industrial wastewater treatment. The objective of this article is to provide an overview on the microbiological and technological aspects of anaerobic phenol degradation and on the research needs to fill the gaps still hindering the diffusion of the anaerobic process. The first part is focused on the microbiology and extensively presents and characterises phenol-degrading bacteria and biodegradation pathways. In the second part, dedicated to process feasibility, anaerobic and aerobic biodegradation kinetics are analysed and compared, and strategies to enhance process performance, i.e. advanced technologies, bioaugmentation, and biostimulation, are critically analysed and discussed. The final section provides a summary of the research needs. Literature data analysis shows the feasibility of anaerobic phenol biodegradation at laboratory and pilot scale, but there is still a consistent gap between achieved aerobic and anaerobic performance. This is why current research demand is mainly related to the development and optimisation of powerful technologies and effective operation strategies able to enhance the competitiveness of the anaerobic process. Research efforts are strongly justified because the anaerobic process is a step forward to a more sustainable approach in wastewater treatment.Key points• Review of phenol-degraders bacteria and biodegradation pathways.• Anaerobic phenol biodegradation kinetics for metabolic and co-metabolic processes.• Microbial and technological strategies to enhance process performance.


Assuntos
Fenol , Águas Residuárias , Anaerobiose , Biodegradação Ambiental , Fenóis , Águas Residuárias/análise
4.
Appl Microbiol Biotechnol ; 104(15): 6825-6838, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488314

RESUMO

The anaerobic biodegradation of phenol has been realised in a sequencing batch reactor (SBR) under anaerobic conditions with phenol as sole carbon and energy source and with glucose as co-substrate. A step-change increase of phenol loading (from 100 up to 2000 mg/L of phenol concentration in the feed solution) has been applied during the acclimation phase in order to progressively induce the development of a specialised microbial consortium. This approach, combined with the dynamic sequence of operations characterising SBRs and with the high biomass retention time, led to satisfactory phenol and COD removal efficiencies with values > 70% for the highest phenol input (2000 mg/L) fed as the single carbon and energy source. Analysis of removal efficiencies and biodegradation rates suggested that the use of glucose as co-substrate did not induce a significant improvement in process performance. Kinetic tests have been performed at different initial phenol (400-1000 mg/L) and glucose (1880-0 mg/L) concentrations to kinetically characterise the developed biomass: estimated kinetic constants are suitable for application and no inhibitory effect due to high concentrations of phenol has been observed in all investigated conditions. The microbial community has been characterised at different operating conditions through molecular tools: results confirm the successful adaptation-operation approach of the microbial consortium showing a gradual increase in richness and diversity and the occurrence and selection of a high proportion of phenol-degrading genera at the end of the experimentation. Key Points • Anaerobic phenol removal in the range of 70-99% in a sequencing batch reactor. • Negligible effect of co-substrate on removal efficiencies and biodegradation rates. • No biomass inhibition due to phenol concentration in the range of 400-1000 mg/L. • Increasing phenol loads promoted the culture enrichment of phenol-degrading genera.


Assuntos
Biodegradação Ambiental , Biomassa , Reatores Biológicos/microbiologia , Microbiota , Fenol/metabolismo , Anaerobiose , Glucose/metabolismo , Cinética , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo
5.
Sci Total Environ ; 723: 138019, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213416

RESUMO

A tubing TPPB (Two-Phase Partitioning Bioreactor) was operated with the objective of verifying the effective treatment of a phenolic synthetic wastewater with simultaneous polymeric tubing bioregeneration by introducing tubing effluent recycle and modifications to the Hydraulic Retention Time (HRT). 2,4-dichlorophenol (DCP) was employed as the target substrate and the bioreactor was operated for a 3 month period under severe loading conditions (from 77 to 384 mg/L d) with HRT in the tubing in the range of 2-4 h. Tubing effluent recycle (recycle flow rate/influent flow rate ratio = 0.3) was applied when a loss of performance was detected arising from the increased load. For HRT values of 3 and 4 h, almost complete DCP removal was achieved after a few days (1-5) of operation while for the 2 h HRT (i.e. in the most severe loading condition) the DCP removal was ≥97%. A beneficial effect on the process performance arising from recycle application was evident for all the operating conditions investigated, and was confirmed by statistical analysis. Essentially complete polymer bioregeneration was achieved when the bioreactor was operated at the lowest HRT (i.e. 2 h), combined with the application of tubing effluent recycle. The results of this study highlighted several advantages of the tubing TPPB configuration in a comparative analysis of different regeneration options, including the possibility of operating continuously with simultaneous bioregeneration and without the need for additional units or operational steps and extra-energy consumption.


Assuntos
Reatores Biológicos , Águas Residuárias , Reciclagem , Eliminação de Resíduos Líquidos
6.
Waste Manag ; 96: 36-46, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376968

RESUMO

Low content of micropollutants in sewage sludge, essential to allow its safe re-use in agriculture, requires effective removals during the digestion phase. To this purpose, we investigated the performance of the anaerobic-aerobic sequential digestion process applied to real waste sludge in the removal of several classes of standard pollutants, i.e. extractable organic halogens (EOXs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), di(2-ethylhexyl)phthalate and alkylphenolethoxylates. In addition, emerging pollutants were also investigated based on their widespread occurrence and on their physicochemical characteristics and eco-toxicological relevance: quaternary ammonium compounds, a number of pharmaceuticals and selected biocides. The anaerobic step was conducted at mesophilic conditions, while two operating temperatures were tested for the post-aerobic treatment, i.e. 20 and 37 °C, respectively. Results showed that the post-aerobic digestion step enhanced the removal of all investigated standard and emerging micropollutants, even in presence of high accumulation in the anaerobic digestate (occurred for some PAHs and PCB congeners). Increased removals (up to 30%) have been generally observed at 37 °C aerobic temperature in comparison with tests at T = 20 °C for all investigated organic micropollutants, with the only exception of halogenated compounds (i.e. EOXs and PCBs). Low biodegradability and high bioaccumulation of the investigated pollutants were successfully faced by the sequential process, which has been demonstrated as an effective alternative solution to produce digested sludge for safe agricultural re-use.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Anaerobiose , Esgotos , Temperatura , Eliminação de Resíduos Líquidos
7.
J Air Waste Manag Assoc ; 69(10): 1170-1181, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184553

RESUMO

Traditionally, aeration units, used as a polishing stage after anaerobic digestion (AD) of wastes, are operated at ambient temperature. Yet, when effluent quality is the main design criterion, raising the temperature of the aeration stage can be justified by improved removal efficiencies. In this study, an anaerobic-aerobic sequential system (AASS) was operated to co-digest raw wastewater and food waste. The aerobic compartment was tested under psychrophilic and mesophilic temperatures. At the design loading rate of 2 gVS L-1 d-1, the anaerobic digester achieved removal efficiencies of 85 ± 2% of volatile solids (VS), 84 ± 3% of total chemical oxygen demand (CODT) and a biogas yield of 1,035 ± 30 mL gVSfed-1 (50% methane). The aerobic reactor achieved additional removal of 8% CODT and 7 % VS. By raising the temperature of the aerobic reactor to the mesophilic range, COD and solids concentrations of the effluent dropped to approximately half their values. This was accompanied by an increase in nitrification (from 68% to 91%) and denitrification (from 10% to 16%). The energy analysis showed that total energy consumption slightly increases (from 0.45 to 0.49 kWh kgCODfed-1) by raising the temperature of the aerobic reactor to mesophilic range. A preliminary evaluation of the sludge disposal cost, revealed a saving increase of 5-6% under mesophilic operation with respect to psychrophilic conditions. Implications: In order to cope with the globally increasing constraints on the disposal of urban wastes, efficient post-processing of effluents becomes a crucial requirement for the anaerobic digestion industry. In this context, the submitted manuscript shows that the quality of the effluent, of an anaerobic digester, treating food waste with raw wastewater, can be substantially improved by optimizing the aerobic polishing stage. Raising the temperature of the aerobic reactor to the mesophilic range resulted in a drop of solids and COD concentrations to approximately half their values. Equally important, the implications on operational costs were found to be favorable, compared to traditional psychrophilic aerobic post-treatment, when taking into consideration indirect sludge treatment costs and energy selling revenues.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Anaerobiose , Reatores Biológicos/economia , Custos e Análise de Custo , Alimentos , Temperatura , Eliminação de Resíduos Líquidos/economia , Águas Residuárias
8.
J Environ Manage ; 230: 63-74, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30268030

RESUMO

An integrated model of a two-step process for the ex situ bioremediation of xenobiotic contaminated soil has been formulated. The process is characterized by an initial extraction step of the organic contaminants from the polluted soil by contact with inexpensive and commercially-available polymer beads, followed by release and biodegradation of the xenobiotics, with parallel polymer bioregeneration, in a Two-Phase Partitioning Bioreactor (TPPB). The regenerated polymer is cyclically reused in the extraction step, so reflecting the robust and otherwise-inert properties of such polymers. The model was calibrated and validated for a soil contaminated with 4-nitrophenol (4NP) and treated with the DuPont polymer Hytrel 8206. In the model calibration, the partition coefficient polymer-soil, Pps, and the mass transfer coefficient, K, were evaluated, as 105.3 and 0.24 h-1 respectively. A diffusion coefficient within the polymer of 6.3 10-8 cm2 s-1 was determined from the fitting of sorption/desorption data. The model was then tested for two alternative process configurations consisting of either one or two soil extraction units, followed by the biodegradation/bioregeneration step. The latter configuration resulted in more effective polymer utilization and is suitable if each extraction step requires a shorter time than the regeneration step. The model predicted that an extraction time of 12 h was sufficient to reach removal efficiencies ≥90% while the biodegradation/bioregeneration step required 24 h to reach efficiencies ≥93%, with a good agreement with experimental data (R2 > 0.98 for both cases). The simulation of the process operated with two extraction units showed a better performance with a final concentration ∼0.2 g4NP kgds-1 vs. 1.69 g4NP kgds-1 obtained with single extraction unit, for a soil contaminated with 10 g4NP kgds-1. Corresponding extraction efficiencies were 96 and 83%, respectively.


Assuntos
Nitrofenóis/metabolismo , Poliésteres/metabolismo , Polímeros/metabolismo , Solo/química , Xenobióticos/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Nitrofenóis/análise , Poliésteres/análise
9.
Sci Total Environ ; 599-600: 1056-1063, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28511350

RESUMO

Effective biological treatment of high salt content wastewater requires consideration of both salt and organic toxicity. This study treated a synthetic saline wastewater containing NaCl (100gL-1) and 2,4-dimethylphenol (1.2gL-1) with a hybrid system consisting of a biological reactor containing spiral-coiled polymeric tubing through which the mixed feed was pumped. The tubing wall was permeable to the organic contaminant, but not to the salt, which allowed transfer of the organic into the cell-containing bioreactor contents for degradation, while not exposing the cells to high salt concentrations. Different grades of DuPont Hytrel polymer were examined on the basis of organic affinity predictions and experimental partition and mass transfer tests. Hytrel G3548 tubing showed the highest permeability for 2,4-dimethylphenol while exerting an effective salt barrier, and was used to verify the feasibility of the proposed system. Very high organic removal (99% after just 5h of treatment) and effective biodegradation of the organic fraction of the wastewater (>90% at the end of the test) were observed. Complete salt separation from the microbial culture was also achieved.

10.
J Environ Manage ; 187: 265-272, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912137

RESUMO

A continuous two-phase partitioning bioreactor (C-TPPB), operated with coiled tubing made of the DuPont polymer Hytrel 8206, was tested for the bioremediation of 4-chlorophenol, as a model toxic compound. The tubing was immersed in the aqueous phase, with the contaminated water flowing tube-side, and an adapted microbial culture suspended in the bioreactor itself, with the metabolic demand of the cells creating a concentration gradient to cause the substrate to diffuse into the bioreactor for biodegradation. The system was operated over a range of loadings (tubing influent concentration 750-1500 mg L-1), with near-complete substrate removal in all cases. Distribution of the contaminant at the end of the tests (96 h) highlighted biological removal in the range of 87-95%, while the amount retained in the polymer ranged from ∼1 to 8%. Mass transfer of the substrate across the tubing wall was not limiting, and the polymer demonstrated the capacity to buffer the substrate loadings and to adapt to microbial metabolism. The impact of C-TPPB operation on biomass activity was also investigated by a kinetic characterization of the microbial culture, which showed better resistance to substrate inhibition after C-TPPB operation, thereby confirming the beneficial effect of sub-inhibitory controlled conditions, characteristic of TPPB systems.


Assuntos
Reatores Biológicos , Clorofenóis/análise , Polímeros/química , Biodegradação Ambiental , Biomassa , Carbono/química , Cromo/análise , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Cinética , Metais/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Sci Total Environ ; 573: 585-593, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27580470

RESUMO

This work describes the application of a solid-liquid two-phase partitioning bioreactor (TPPB) for the removal of colour from a real textile wastewater containing reactive azo-dyes. Four polymers were tested over the pH range of 4-9 to select the most effective absorbant to be used as the partitioning phase in the TPPB. The best results were obtained with Hytrel 8206 at pH4 achieving ~70% colour removal, based on the dominant wavelength, in the first 5h of contact time, and 84% after 24h. Wastewater treatment was undertaken in a solid-liquid TPPB operated with Hytrel 8206 in sequential anaerobic-aerobic configuration. The reaction time of 23h was equally distributed between the anaerobic and aerobic phases and, to favour colour uptake, the pH was controlled at 4.5 in the first 4h of the anaerobic phase, and then increased to 7.5. Colour removal (for the dominant wavelength, 536nm) increased from 70 to 85% by modifying the bioreactor operation from single-phase to TPPB mode. Based on COD measurements nearly complete biodegradation of the intermediates produced in the anaerobic phase was obtained, both in the single-phase and two-phase mode, with better performance of the TPPB system reaching 75% CODDye removal.


Assuntos
Compostos Azo/análise , Reatores Biológicos/microbiologia , Polímeros/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Absorção Fisico-Química , Aerobiose , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Cinética , Transição de Fase , Indústria Têxtil
12.
J Hazard Mater ; 317: 403-415, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27318737

RESUMO

The removal of a xenobiotic (4-chlorophenol) from contaminated water was investigated in a simulated continuous two-phase partitioning bioreactor (C-TPPB), fitted with coiled tubing comprised of a specifically-selected extruded polymer, Hytrel 8206. Wastewater flowed inside the tubing, the pollutant diffused through the tubing wall, and was removed in the aqueous bioreactor phase at typical biological removal rates in the C-TTPB simulated by varying aqueous phase throughput to the reactor. Operating over a range of influent substrate concentrations (500-1500mgL(-1)) and hydraulic retention times in the tubing (4-8h), overall mass transfer coefficients were 1.7-3.5×10(-7)ms(-1), with the highest value corresponding to the highest tubing flow rate. Corresponding mass transfer rates are of the same order as biological removal rates, and thus do not limit the removal process. The C-TPPB showed good performance over all organic and hydraulic loading ranges, with removal efficiencies of 4CP in the tubing wastewater stream always ≥96%. Additionally, the presence of the Hytrel tubing was able to buffer increases in organic loading to the hybrid system, enhancing overall process stability. Biological testing of the C-TPPB confirmed the abiotic test results demonstrating even higher 4-chlorophenol removal efficiency (∼99%) in the tubing stream.


Assuntos
Reatores Biológicos , Clorofenóis/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Xenobióticos/análise , Desenho de Equipamento , Modelos Teóricos , Poliésteres/química , Purificação da Água/instrumentação
13.
Sci Total Environ ; 545-546: 453-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26760266

RESUMO

Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Anaerobiose , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio
14.
J Environ Manage ; 159: 169-177, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074469

RESUMO

In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction.


Assuntos
Reatores Biológicos , Clorofenóis/química , Descontaminação/métodos , Pentaclorofenol/química , Poliésteres/química , Poluentes do Solo/química , Biodegradação Ambiental , Clorofenóis/análise , Clorofenóis/metabolismo , Pentaclorofenol/análise , Pentaclorofenol/metabolismo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solventes
15.
J Environ Manage ; 150: 81-91, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25438115

RESUMO

Solid phase extraction performed with commercial polymer beads to treat soil contaminated by chlorophenols (4-chlorophenol, 2,4-dichlorophenol and pentachlorophenol) as single compounds and in a mixture has been investigated in this study. Soil-water-polymer partition tests were conducted to determine the relative affinities of single compounds in soil-water and polymer-water pairs. Subsequent soil extraction tests were performed with Hytrel 8206, the polymer showing the highest affinity for the tested chlorophenols. Factors that were examined were polymer type, moisture content, and contamination level. Increased moisture content (up to 100%) improved the extraction efficiency for all three compounds. Extraction tests at this upper level of moisture content showed removal efficiencies ≥70% for all the compounds and their ternary mixture, for 24 h of contact time, which is in contrast to the weeks and months, normally required for conventional ex situ remediation processes. A dynamic model characterizing the rate and extent of decontamination was also formulated, calibrated and validated with the experimental data. The proposed model, based on the simplified approach of "lumped parameters" for the mass transfer coefficients, provided very good predictions of the experimental data for the absorptive removal of contaminants from soil at different individual solute levels. Parameters evaluated from calibration by fitting of single compound data, have been successfully applied to predict mixture data, with differences between experimental and predicted data in all cases being ≤3%.


Assuntos
Descontaminação , Polímeros/química , Poluentes do Solo/química , Solo/química , Clorofenóis/química , Poluição Ambiental/prevenção & controle , Humanos , Modelos Teóricos , Pentaclorofenol/química , Extração em Fase Sólida
16.
J Hazard Mater ; 262: 31-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24007996

RESUMO

The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.


Assuntos
Reatores Biológicos , Recuperação e Remediação Ambiental/métodos , Polímeros/química , Poluentes do Solo/química , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...