Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
3D Print Med ; 10(1): 12, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627256

RESUMO

BACKGROUND: Device-related bacterial infections account for a large proportion of hospital-acquired infections. The ability of bacteria to form a biofilm as a protective shield usually makes treatment impossible without removal of the implant. Topographic surfaces have attracted considerable attention in studies seeking antibacterial properties without the need for additional antimicrobial substances. As there are still no valid rules for the design of antibacterial microstructured surfaces, a fast, reproducible production technique with good resolution is required to produce test surfaces and to examine their effectiveness with regard to their antibacterial properties. METHODS: In this work various surfaces, flat and with microcylinders in different dimensions (flat, 1, 3 and 9 µm) with a surface area of 7 × 7 mm were fabricated with a nanoprinter using two-photon lithography and evaluated for their antibiofilm effect. The microstructured surfaces were cultured for 24 h with different strains of Pseudomonas aeruginosa and Staphylococcus aureus to study bacterial attachment to the patterned surfaces. In addition, surface wettability was measured by a static contact angle measurement. RESULTS: Contact angles increased with cylinder size and thus hydrophobicity. Despite the difference in wettability, Staphylococcus aureus was not affected by the microstructures, while for Pseudomonas aeruginosa the bacterial load increased with the size of the cylinders, and compared to a flat surface, a reduction in bacteria was observed for one strain on the smallest cylinders. CONCLUSIONS: Two-photon lithography allowed rapid and flexible production of microcylinders of different sizes, which affected surface wettability and bacterial load, however, depending on bacterial type and strain.

2.
Brain Stimul ; 17(3): 510-524, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677543

RESUMO

BACKGROUND: Electrical stimulation of the vagus nerve (VN) is a therapy for epilepsy, obesity, depression, and heart diseases. However, whole nerve stimulation leads to side effects. We examined the neuroanatomy of the mid-cervical segment of the human VN and its superior cardiac branch to gain insight into the side effects of VN stimulation and aid in developing targeted stimulation strategies. METHODS: Nerve specimens were harvested from eight human body donors, then subjected to immunofluorescence and semiautomated quantification to determine the signature, quantity, and spatial distribution of different axonal categories. RESULTS: The right and left cervical VN (cVN) contained a total of 25,489 ± 2781 and 23,286 ± 3164 fibers, respectively. Two-thirds of the fibers were unmyelinated and one-third were myelinated. About three-quarters of the fibers in the right and left cVN were sensory (73.9 ± 7.5 % versus 72.4 ± 5.6 %), while 13.2 ± 1.8 % versus 13.3 ± 3.0 % were special visceromotor and parasympathetic, and 13 ± 5.9 % versus 14.3 ± 4.0 % were sympathetic. Special visceromotor and parasympathetic fibers formed clusters. The superior cardiac branches comprised parasympathetic, vagal sensory, and sympathetic fibers with the left cardiac branch containing more sympathetic fibers than the right (62.7 ± 5.4 % versus 19.8 ± 13.3 %), and 50 % of the left branch contained sensory and sympathetic fibers only. CONCLUSION: The study indicates that selective stimulation of vagal sensory and motor fibers is possible. However, it also highlights the potential risk of activating sympathetic fibers in the superior cardiac branch, especially on the left side.

3.
J Imaging Inform Med ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483695

RESUMO

The introduction of three-dimensional (3D) printed anatomical models has garnered interest in pre-operative planning, especially in orthopedic and trauma surgery. Identifying potential error sources and quantifying their effect on the model dimensional accuracy are crucial for the applicability and reliability of such models. In this study, twenty radii were extracted from anatomic forearm specimens and subjected to osteotomy to simulate a defined fracture of the distal radius (Colles' fracture). Various factors, including two different computed tomography (CT) technologies (energy-integrating detector (EID) and photon-counting detector (PCD)), four different CT scanners, two scan protocols (i.e., routine and high dosage), two different scan orientations, as well as two segmentation algorithms were considered to determine their effect on 3D model accuracy. Ground truth was established using 3D reconstructions of surface scans of the physical specimens. Results indicated that all investigated variables significantly impacted the 3D model accuracy (p < 0.001). However, the mean absolute deviation fell within the range of 0.03 ± 0.20 to 0.32 ± 0.23 mm, well below the 0.5 mm threshold necessary for pre-operative planning. Intra- and inter-operator variability demonstrated fair to excellent agreement for 3D model accuracy, with an intra-class correlation (ICC) of 0.43 to 0.92. This systematic investigation displayed dimensional deviations in the magnitude of sub-voxel imaging resolution for all variables. Major pitfalls included missed or overestimated bone regions during the segmentation process, necessitating additional manual editing of 3D models. In conclusion, this study demonstrates that 3D bone fracture models can be obtained with clinical routine scanners and scan protocols, utilizing a simple global segmentation threshold, thereby providing an accurate and reliable tool for pre-operative planning.

4.
J Heart Lung Transplant ; 43(6): 985-995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360162

RESUMO

BACKGROUND: Although cardiac autonomic markers (CAMs) are commonly used to assess cardiac reinnervation in heart-transplant patients, their relationship to the degree of sympathetic and vagal cardiac reinnervation is not well understood yet. To study this relationship, we applied a mathematical model of the cardiovascular system and its autonomic control. METHODS: By simulating varying levels of sympathetic and vagal efferent sinoatrial reinnervation, we analyzed the induced changes in CAMs including resting heart rate (HR), bradycardic and tachycardic HR response to Valsalva maneuver, root mean square of successive differences between normal heartbeats (RMSSD), low-frequency (LF), high-frequency (HF), and total spectral power (TSP). RESULTS: For assessment of vagal cardiac reinnervation levels >20%, resting HR (ρ = 0.99, p < 0.05), RMSSD (ρ = 0.97, p < 0.05), and TSP (ρ = 0.96, p < 0.05) may be equally suitable as HF-power (ρ = 0.97, p < 0.05). To assess sympathetic reinnervation, LF/HF ratio (ρ = 0.87, p < 0.05) and tachycardic response to Valsalva maneuver (ρ = 0.9, p < 0.05) may be more suitable than LF-power (ρ = 0.77, p < 0.05). CONCLUSIONS: Our model reports mechanistic relationships between CAMs and levels of efferent autonomic sinoatrial reinnervation. The results indicate differences in the suitability of these markers to assess vagal and sympathetic reinnervation. Although our analysis is purely conceptual, the developed model can help to gain important insights into the genesis of CAMs and their relationship to efferent sinoatrial reinnervation and, thus, provide indications for clinical study evaluation.


Assuntos
Sistema Nervoso Autônomo , Frequência Cardíaca , Coração , Humanos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo/fisiologia , Coração/inervação , Coração/fisiologia , Transplante de Coração , Nervo Vago/fisiologia , Modelos Teóricos , Manobra de Valsalva/fisiologia , Sistema Nervoso Simpático/fisiologia
5.
3D Print Med ; 10(1): 4, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305928

RESUMO

Modern additive manufacturing enables the simultaneous processing of different materials during the printing process. While multimaterial 3D printing allows greater freedom in part design, the prediction of the mix-material properties becomes challenging. One type of multimaterials are matrix-inclusion composites, where one material contains inclusions of another material. Aim of this study was to develop a method to predict the uniaxial Young's modulus and Poisson's ratio of material jetted matrix-inclusion composites by a combination of simulations and experimental data.Fifty samples from commercially available materials in their pure and matrix-inclusion mixed forms, with cubic inclusions, have been fabricated using material jetting and mechanically characterized by uniaxial tensile tests. Multiple simulation approaches have been assessed and compared to the measurement results in order to find and validate a method to predict the multimaterials' properties. Optical coherence tomography and microscopy was used to characterize the size and structure of the multimaterials, compared to the design.The materials exhibited Young's moduli in the range of 1.4 GPa to 2.5 GPa. The multimaterial mixtures were never as stiff as the weighted volume average of the primary materials (up to [Formula: see text] softer for 45% RGD8530-DM inclusions in VeroClear matrix). Experimental data could be predicted by finite element simulations by considering a non-ideal contact stiffness between matrix and inclusion ([Formula: see text] for RGD8530-DM, [Formula: see text] for RGD8430-DM), and geometries of the printed inclusions that deviated from the design (rounded edge radii of [Formula: see text]m). Not considering this would lead to a difference of the estimation result of up to [Formula: see text]MPa (44%), simulating an inclusion volume fraction of 45% RGD8530-DM.Prediction of matrix-inclusion composites fabricated by multimaterial jetting printing, is possible, however, requires a priori knowledge or additional measurements to characterize non-ideal contact stiffness between the components and effective printed geometries, precluding therefore a simple multimaterial modelling.

6.
3D Print Med ; 10(1): 5, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376810

RESUMO

BACKGROUND: Additively manufactured (AM) anatomical bone models are primarily utilized for training and preoperative planning purposes. As such, they must meet stringent requirements, with dimensional accuracy being of utmost importance. This study aimed to evaluate the precision and accuracy of anatomical bone models manufactured using three different AM technologies: digital light processing (DLP), fused deposition modeling (FDM), and PolyJetting (PJ), built in three different part orientations. Additionally, the study sought to assess surgeons' perceptions of how well these models mimic real bones in simulated osteosynthesis. METHODS: Computer-aided design (CAD) models of six human radii were generated from computed tomography (CT) imaging data. Anatomical models were then manufactured using the three aforementioned technologies and in three different part orientations. The surfaces of all models were 3D-scanned and compared with the original CAD models. Furthermore, an anatomical model of a proximal femur including a metastatic lesion was manufactured using the three technologies, followed by (mock) osteosynthesis performed by six surgeons on each type of model. The surgeons' perceptions of the quality and haptic properties of each model were assessed using a questionnaire. RESULTS: The mean dimensional deviations from the original CAD model ranged between 0.00 and 0.13 mm with maximal inaccuracies < 1 mm for all models. In surgical simulation, PJ models achieved the highest total score on a 5-point Likert scale ranging from 1 to 5 (with 1 and 5 representing the lowest and highest level of agreement, respectively), (3.74 ± 0.99) in the surgeons' perception assessment, followed by DLP (3.41 ± 0.99) and FDM (2.43 ± 1.02). Notably, FDM was perceived as unsuitable for surgical simulation, as the material melted during drilling and sawing. CONCLUSIONS: In conclusion, the choice of technology and part orientation significantly influenced the accuracy and precision of additively manufactured bone models. However, all anatomical models showed satisfying accuracies and precisions, independent of the AM technology or part orientation. The anatomical and functional performance of FDM models was rated by surgeons as poor.

7.
Neurosurg Focus ; 56(1): E9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163349

RESUMO

OBJECTIVE: In the era of flow diversion, there is an increasing demand to train neurosurgeons outside the operating room in safely performing clipping of unruptured intracranial aneurysms. This study introduces a clip training simulation platform for residents and aspiring cerebrovascular neurosurgeons, with the aim to visualize peri-aneurysm anatomy and train virtual clipping applications on the matching physical aneurysm cases. METHODS: Novel, cost-efficient techniques allow the fabrication of realistic aneurysm phantom models and the additional integration of holographic augmented reality (AR) simulations. Specialists preselected suitable and unsuitable clips for each of the 5 patient-specific models, which were then used in a standardized protocol involving 9 resident participants. Participants underwent four sessions of clip applications on the models, receiving no interim training (control), a video review session (video), or a video review session and holographic clip simulation training (video + AR) between sessions 2 and 3. The study evaluated objective microsurgical skills, which included clip selection, number of clip applications, active simulation time, wrist tremor analysis during simulations, and occlusion efficacy. Aneurysm occlusions of the reference sessions were assessed by indocyanine green videoangiography, as well as conventional and photon-counting CT scans. RESULTS: A total of 180 clipping procedures were performed without technical complications. The measurements of the active simulation times showed a 39% improvement for all participants. A median of 2 clip application attempts per case was required during the final session, with significant improvement observed in experienced residents (postgraduate year 5 or 6). Wrist tremor improved by 29% overall. The objectively assessed aneurysm occlusion rate (Raymond-Roy class 1) improved from 76% to 80% overall, even reaching 93% in the extensively trained cohort (video + AR) (p = 0.046). CONCLUSIONS: The authors introduce a newly developed simulator training platform combining physical and holographic aneurysm clipping simulators. The development of exchangeable, aneurysm-comprising housings allows objective radio-anatomical evaluation through conventional and photon-counting CT scans. Measurable performance metrics serve to objectively document improvements in microsurgical skills and surgical confidence. Moreover, the different training levels enable a training program tailored to the cerebrovascular trainees' levels of experience and needs.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Procedimentos Neurocirúrgicos/métodos , Tremor/cirurgia , Microcirurgia/métodos , Simulação por Computador
8.
3D Print Med ; 9(1): 27, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768399

RESUMO

Due to its high printing resolution and ability to print multiple materials simultaneously, inkjet technology has found wide application in medicine. However, the biological safety of 3D-printed objects is not always guaranteed due to residues of uncured resins or support materials and must therefore be verified. The aim of this study was to evaluate the quality of standard assessment methods for determining the quality and properties of polyjet-printed scaffolds in terms of their dimensional accuracy, surface topography, and cytotoxic potential.Standardized 3D-printed samples were produced in two printing orientations (horizontal or vertical). Printing accuracy and surface roughness was assessed by size measurements, VR-5200 3D optical profilometer dimensional analysis, and scanning electron microscopy. Cytotoxicity tests were performed with a representative cell line (L929) in a comparative laboratory study. Individual experiments were performed with primary cells from clinically relevant tissues and with a Toxdent cytotoxicity assay.Dimensional measurements of printed discs indicated high print accuracy and reproducibility. Print accuracy was highest when specimens were printed in horizontal direction. In all cytotoxicity tests, the estimated mean cell viability was well above 70% (p < 0.0001) regardless of material and printing direction, confirming the low cytotoxicity of the final 3D-printed objects.

9.
Artif Intell Med ; 143: 102632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673589

RESUMO

Training deep neural network classifiers for electrocardiograms (ECGs) requires sufficient data. However, imbalanced datasets pose a major problem for the training process and hence data augmentation is commonly performed. Generative adversarial networks (GANs) can create synthetic ECG data to augment such imbalanced datasets. This review aims at identifying the present literature concerning synthetic ECG signal generation using GANs to provide a comprehensive overview of architectures, quality evaluation metrics, and classification performances. Thirty publications from the years 2019 to 2022 were selected from three separate databases. Nine publications used a quality evaluation metric neglecting classification, eleven performed a classification but omitted a quality evaluation metric, and ten publications performed both. Twenty different quality evaluation metrics were observed. Overall, the classification performance of databases augmented with synthetically created ECG signals increased by 7 % to 98 % in accuracy and 6 % to 97 % in sensitivity. In conclusion, synthetic ECG signal generation using GANs represents a promising tool for data augmentation of imbalanced datasets. Consistent quality evaluation of generated signals remains challenging. Hence, future work should focus on the establishment of a gold standard for quality evaluation metrics for GANs.


Assuntos
Eletrocardiografia , Redes Neurais de Computação , Bases de Dados Factuais
10.
Front Physiol ; 14: 1155032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560156

RESUMO

Introduction: Ventricular assist devices (LVADs) are a valuable therapy for end-stage heart failure patients. However, some adverse events still persist, such as suction that can trigger thrombus formation and cardiac rhythm disorders. The aim of this study is to validate a suction module (SM) as a test bench for LVAD suction detection and speed control algorithms. Methods: The SM consists of a latex tube, mimicking the ventricular apex, connected to a LVAD. The SM was implemented into a hybrid in vitro-in silico cardiovascular simulator. Suction was induced simulating hypovolemia in a profile of a dilated cardiomyopathy and of a restrictive cardiomyopathy for pump speeds ranging between 2,500 and 3,200 rpm. Clinical data collected in 38 LVAD patients were used for the validation. Clinical and simulated LVAD flow waveforms were visually compared. For a more quantitative validation, a binary classifier was used to classify simulated suction and non-suction beats. The obtained classification was then compared to that generated by the simulator to evaluate the specificity and sensitivity of the simulator. Finally, a statistical analysis was run on specific suction features (e.g., minimum impeller speed pulsatility, minimum slope of the estimated flow, and timing of the maximum slope of the estimated flow). Results: The simulator could reproduce most of the pump waveforms observed in vivo. The simulator showed a sensitivity and specificity and of 90.0% and 97.5%, respectively. Simulated suction features were in the interquartile range of clinical ones. Conclusions: The SM can be used to investigate suction in different pathophysiological conditions and to support the development of LVAD physiological controllers.

11.
Sci Rep ; 13(1): 12082, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495645

RESUMO

Field driven design is a novel approach that allows to define through equations geometrical entities known as implicit bodies. This technology does not rely upon conventional geometry subunits, such as polygons or edges, rather it represents spatial shapes through mathematical functions within a geometrical field. The advantages in terms of computational speed and automation are conspicuous, and well acknowledged in engineering, especially for lattice structures. Moreover, field-driven design amplifies the possibilities for generative design, facilitating the creation of shapes generated by the software on the basis of user-defined constraints. Given such potential, this paper suggests the possibility to use the software nTopology, which is currently the only software for field-driven generative design, in the context of patient-specific implant creation for maxillofacial surgery. Clinical scenarios of applicability, including trauma and orthognathic surgery, are discussed, as well as the integration of this new technology with current workflows of virtual surgical planning. This paper represents the first application of field-driven design in maxillofacial surgery and, although its results are very preliminary as it is limited in considering only the distance field elaborated from specific points of reconstructed anatomy, it introduces the importance of this new technology for the future of personalized implant design in surgery.


Assuntos
Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Cirurgia Assistida por Computador , Cirurgia Bucal , Humanos , Cirurgia Assistida por Computador/métodos , Software , Procedimentos Cirúrgicos Ortognáticos/métodos , Imageamento Tridimensional/métodos
12.
ASAIO J ; 69(9): 817-826, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191479

RESUMO

Continuous monitoring of left ventricular stroke work (LVSW) may improve the medical management of patients with rotary left ventricular assist devices (LVAD). However, implantable pressure-volume sensors are limited by measurement drift and hemocompatibility. Instead, estimator algorithms derived from rotary LVAD signals may be a suitable alternative. An LVSW estimator algorithm was developed and evaluated in a range of in vitro and ex vivo cardiovascular conditions during full assist (closed aortic valve [AoV]) and partial assist (opening AoV) mode. For full assist, the LVSW estimator algorithm was based on LVAD flow, speed, and pump pressure head, whereas for partial assist, the LVSW estimator combined the full assist algorithm with an estimate of AoV flow. During full assist, the LVSW estimator demonstrated a good fit in vitro and ex vivo (R 2 : 0.97 and 0.86, respectively) with errors of ± 0.07 J. However, LVSW estimator performance was reduced during partial assist, with in vitro : R 2 : 0.88 and an error of ± 0.16 J and ex vivo : R 2 : 0.48 with errors of ± 0.11 J. Further investigations are required to improve the LVSW estimate with partial assist; however, this study demonstrated promising results for a continuous estimate of LVSW for rotary LVADs.


Assuntos
Coração Auxiliar , Acidente Vascular Cerebral , Humanos , Valva Aórtica
13.
3D Print Med ; 9(1): 14, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142797

RESUMO

This editorial presents the vision for the newly formed (2022) European 3D Special Interest Group (EU3DSIG) in the landscape of medical 3D printing. There are four areas of work identified by the EU3DSIG in the current landscape, namely: 1) creating and fostering communication channels among researches, clinicians and industry, 2) generating awareness of hospitals point-of-care 3D technologies; 3) knowledge sharing and education; 4) regulation, registry and reimbursement models.

15.
J Cardiopulm Rehabil Prev ; 43(5): 346-353, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014949

RESUMO

PURPOSE: Exercise performance and quality of life (QoL) of left ventricular assist device (LVAD) patients improve after early cardiac rehabilitation (CR). The purpose of this study was to examine the efficacy of multiprofessional long term phase 3 outpatient CR, and whether cardiopulmonary exercise testing (CPX) and 6-min walk testing (6MWT) post-LVAD implantation predict hospital readmission. METHODS: This retrospective observational cohort study included 29 LVAD patients (58.6 ± 7.7 yr, female: 13.8%, body mass index: 29.4 ± 3.3 kg/m 2 ). Functional performance tests (CPX, 6MWT, sit-to-stand test), QoL, and psychological surveys (Kansas City Cardiomyopathy Questionnaire, hospital anxiety and depression scale, and Control Convictions about Disease and Health [KKG]) were performed at baseline and at the end of CR. RESULTS: The CR was initiated at a median (IQR) of 159 (130-260) d after LVAD implantation for a duration of 340 (180-363) d with 46.8 ± 23.2 trainings. The 6MWT (408.4 ± 113.3 vs 455.4 ± 115.5 m, P = .003) and sit-to-stand test (16.7 ± 6.9 vs 19.0 ± 5.3 repetitions, P = .033) improved, but relative peak oxygen uptake (V˙ o2peak : 9.4 [8.2-14.4] vs 9.3 [7.8-13.4] mL/min/kg, P = .57) did not change. Using receiver operating characteristic curve analysis, baseline V˙ o2peak values were associated with readmission 1-yr after CR onset (C-statistic = 0.88) with a cutoff value of V˙ o2peak < 9.15 mL/min/kg (100% sensitivity, 78% specificity, P < .001). The Kansas City Cardiomyopathy Questionnaire self-efficacy and knowledge (+6.3 points), QoL (+5.0 points), and social limitation (+7.1 points) demonstrated clinically important changes. In addition, the hospital anxiety and depression scale showed a significant reduction in anxiety (4.6 ± 3.2 vs 2.6 ± 2.4, P = .03). CONCLUSIONS: Long-term CR is safe and LVAD outpatients showed improvement of QoL, anxiety, and submaximal exercise performance. In addition, V˙ o2peak and 6MWT have prognostic value for readmission.


Assuntos
Reabilitação Cardíaca , Cardiomiopatias , Insuficiência Cardíaca , Coração Auxiliar , Humanos , Feminino , Qualidade de Vida , Pacientes Ambulatoriais , Estudos Retrospectivos
16.
Sci Rep ; 13(1): 4214, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918673

RESUMO

The cardiac responses to vagus nerve stimulation (VNS) are still not fully understood, partly due to uncontrollable confounders in the in-vivo experimental condition. Therefore, an ex-vivo Langendorff-perfused rabbit heart with intact vagal innervation is proposed to study VNS in absence of cofounding anesthetic or autonomic influences. The feasibility to evoke chronotropic responses through electrical stimulation ex-vivo was studied in innervated isolated rabbit hearts (n = 6). The general nerve excitability was assessed through the ability to evoke a heart rate (HR) reduction of at least 5 bpm (physiological threshold). The excitability was quantified as the charge needed for a 10-bpm HR reduction. The results were compared to a series of in-vivo experiments rabbits (n = 5). In the ex-vivo isolated heart, the baseline HR was about 20 bpm lower than in-vivo (158 ± 11 bpm vs 181 ± 19 bpm). Overall, the nerve remained excitable for about 5 h ex-vivo. The charges required to reduce HR by 5 bpm were 9 ± 6 µC and 549 ± 370 µC, ex-vivo and in-vivo, respectively. The charges needed for a 10-bpm HR reduction, normalized to the physiological threshold were 1.78 ± 0.8 and 1.22 ± 0.1, in-vivo and ex-vivo, respectively. Overall, the viability of this ex-vivo model to study the acute cardiac effects of VNS was demonstrated.


Assuntos
Estimulação do Nervo Vago , Animais , Coelhos , Estimulação do Nervo Vago/métodos , Coração/fisiologia , Nervo Vago/fisiologia , Sistema Nervoso Autônomo , Estimulação Elétrica , Bradicardia , Frequência Cardíaca
17.
Front Cardiovasc Med ; 10: 1083300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742071

RESUMO

Introduction: Transcatheter aortic valve implantation (TAVI) has become an alternative to surgical replacement of the aortic valve elderly patients. However, TAVI patients may suffer from paravalvular leaks (PVL). Detecting and grading is usually done by echocardiography, but is limited by resolution, 2D visualization and operator dependency. 4D flow magnetic resonance imaging (MRI) is a promising alternative, which did not reach clinical application in TAVI patients. The aim of this study was applying 3D printing technologies in order to evaluate flow patterns and hemodynamics of PVLs following TAVI, exploiting 4D flow MRI and standard ultrasound. Materials and methods: An MR-compatible, anatomically left ventricle, aortic root, and ascending aorta model was fabricated by combining 3D-printed parts and various soft silicone materials to match physiological characteristics. An Abbott Portico™ valve was used in continuous antegrade flow (12-22 l/min), retrograde flow with varying transvalvular pressures (60-110 mmHg), and physiological pulsatile hemodynamics (aortic pressure: 120/80 mmHg, cardiac output: 5 l/min) Time-resolved MR measurements were performed above and below the TAVI stent and compared with color Doppler ultrasound measurements in exactly the same setup. Results: The continuous antegrade flow measurements from MRI largely agreed with the flowmeter measurements, and a maximum error of only 7% was observed. In the retrograde configuration, visualization of the paravalvular leaks was possible from the MR measurements, but flow was overestimated by up to 33%. The 4D MRI measurement in the pulsatile setup revealed a single main PVL, which was also confirmed by the color Doppler measurements, and velocities were similar (2.0 m/s vs. 1.7 m/s). Discussion: 4D MRI techniques were used to qualitatively assess flow in a patient-specific, MR-compatible and flexible model, which only became possible through the use of 3D printing techniques. Flow patterns in the ascending aorta, identification and quantification of PVLs was possible and the location and extent of PVLs were confirmed by ultrasound measurements. The 4D MRI flow technique allowed evaluation of flow patterns in the ascending aorta and the left ventricle below the TAVI stent with good results in identifying PVLs, demonstrating its capabilities over ultrasound by providing the ability to visualize the paravalvular jets in three dimensions at however, additional expenditure of time and money.

18.
J Heart Lung Transplant ; 42(4): 466-477, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682893

RESUMO

BACKGROUND: Despite design improvements in left ventricular assist devices (LVADs) over the past decade, limitations of external, wearable VAD components affect patient quality of life and safety. The aim of this study was to describe both user experience and human factor issues of 2 contemporary LVADs. METHODS: This single-center, cross-sectional study included LVAD outpatients who were at least 3 months after implantation. Before developing the 16-item survey, a systematic literature review and 2-round Delphi method involving 9 VAD clinicians were used to select items in 6 domains: power supply, emergency situations, wearability, mobility, and freedom to travel, user modifications, lifestyle, and home adaptations. RESULTS: Fifty-eight patients (61.6 ± 11.6 years, 13.8% female, HeartMate 3 (HM3)/HVAD: n = 39/19) completed the one-time survey after median of 853 days on device: 10.3% reported problems changing power supply, 12.7% unintentional driveline disconnection (HM3: 5.6% vs HVAD: 26.3%, p = 0.041). Against the recommendation 74.1% sleep with battery-support (HM3: 88.9% vs HVAD: 44.4%, p = 0.001). About 65.3% criticized the carry bag weight/size (HM3: 71.4% vs HVAD: 50.0%, p = 0.035), thus 24.1% wear an own carrying-system, 42.1% modified their wearables, 38.9% their clothing, and 65.3% their home to cope with life on LVAD support. Mobility is reduced due to limited wearability: 18.9% went abroad (only 3.7% by plane) and 40.0% use less public transport than before implantation (the older the less: r = -0.37, p = 0.013). CONCLUSIONS: HVAD and HM3 wearables still show a variety of human factors issues and potential for improved user experience. User-centered design and incorporation of patient feedback may increase user satisfaction, and patient safety.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Estudos Transversais , Insuficiência Cardíaca/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Fatores de Risco
19.
Sci Rep ; 12(1): 18794, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335207

RESUMO

Persistent sinus tachycardia substantially increases the risk of cardiac death. Vagus nerve stimulation (VNS) is known to reduce the heart rate, and hence may be a non-pharmacological alternative for the management of persistent sinus tachycardia. To precisely regulate the heart rate using VNS, closed-loop control strategies are needed. Therefore, in this work, we developed two closed-loop VNS strategies using an in-silico model of the cardiovascular system. Both strategies employ a proportional-integral controller that operates on the current amplitude. While one control strategy continuously delivers stimulation pulses to the vagus nerve, the other applies bursts of stimuli in synchronization with the cardiac cycle. Both were evaluated in Langendorff-perfused rabbit hearts (n = 6) with intact vagal innervation. The controller performance was quantified by rise time (Tr), steady-state error (SSE), and percentual overshoot amplitude (%OS). In the ex-vivo setting, the cardiac-synchronized variant resulted in Tr = 10.7 ± 4.5 s, SSE = 12.7 ± 9.9 bpm and %OS = 5.1 ± 3.6% while continuous stimulation led to Tr = 10.2 ± 5.6 s, SSE = 10 ± 6.7 bpm and %OS = 3.2 ± 1.9%. Overall, both strategies produced a satisfying and reproducible performance, highlighting their potential use in persistent sinus tachycardia.


Assuntos
Estimulação do Nervo Vago , Animais , Coelhos , Frequência Cardíaca/fisiologia , Taquicardia Sinusal , Nervo Vago/fisiologia , Coração/fisiologia
20.
Front Physiol ; 13: 1010862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246102

RESUMO

Atrial fibrillation (AF) is a common comorbidity in left ventricular assist device (LVAD) patients and has been identified as a risk factor for thromboembolic stroke. Blood stagnation within the left atrial appendage (LAA) is considered a possible major source of thrombosis and clinical studies have shown reduced thromboembolic risk after LAA occlusion (LAAO). Therefore, this study aims to investigate the effect of LAAO on thrombosis-related parameters using patient-specific simulations. Left ventricular and left atrial geometries of an LVAD patient were obtained from computed tomography and combined with hemodynamic data with either sinus rhythm (SR) or AF generated by a lumped parameter model. In four simulations applying contractile walls, stagnation volume and blood residence times were evaluated with or without AF and with or without LAAO. Reduced atrial contraction in AF resulted in unfavorable flow dynamics within the left atrium. The average atrial velocity was lower for the AF simulation when compared to SR, resulting in a 55% increase in the atrial stagnation volume (from 4.2 to 6.5 cm3). Moreover, blood remained in the LAA for more than 8 cardiac cycles. After LAAO the atrial stagnation decreased from 4.2 to 1.4 cm3 for SR and from 6.5 to 2.3 cm3 for the AF simulation. A significant stagnation volume was found in the LAA for both SR and AF, with larger values occurring with AF. These regions are known as potential sources for thrombus formation and can be diminished by LAAO. This significantly improved the thrombus-related flow parameters and may also lower the risk of thromboembolic events from the appendage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...