Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673306

RESUMO

Health authorities carefully evaluate any change in the batch manufacturing process of a drug before and after regulatory approval. In the absence of an adequate in vitro-in vivo correlation (Level A IVIVC), an in vivo bioequivalence (BE) study is frequently required, increasing the cost and time of drug development. This study focused on developing a Level A IVIVC for progesterone vaginal rings (PVRs), a dosage form designed for the continuous delivery in vivo. The pharmacokinetics (PK) of four batches of rings charged with 125, 375, 750 and 1500 mg of progesterone and characterized by different in vitro release rates were evaluated in two clinical studies. In vivo serum concentrations and in vitro release profiles were used to develop a population IVIVC progesterone ring (P-ring) model through a direct differential-equation-based method and a nonlinear-mixed-effect approach. The in vivo release, Rvivo(t), was predicted from the in vitro profile through a nonlinear relationship. Rvivo(t) was used as the input of a compartmental PK model describing the in vivo serum concentration dynamics of progesterone. The proposed IVIVC P-ring model was able to correctly predict the in vivo concentration-time profiles of progesterone starting from the in vitro PVR release profiles. Its internal and external predictability was carefully evaluated considering the FDA acceptance criteria for IVIVC assessment of extended-release oral drugs. Obtained results justified the use of the in vitro release testing in lieu of clinical studies for the BE assessment of any new PVRs batches. Finally, the possible use of the developed population IVIVC model as a simulator of virtual BE trials was explored through a case study.

2.
Exp Eye Res ; 85(3): 323-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17662276

RESUMO

The effect of the heparin analog 5-amino-2-naphthalenesulfonate (5-amino-2-NMS) on retinal neovascularization was investigated in the mouse model for oxygen-induced retinopathy (OIR). From postnatal day 7 (P7) until P12, mice were kept in a 75% oxygen environment. On P12, they received an intravitreal injection of 10mM 5-amino-2-NMS in one eye and PBS as control substance in the fellow eye. The animals were intracardially perfused with fluorescein-dextran solution on P17. Retinal whole mounts were prepared and ischemic retinopathy was evaluated in 30 animals using a standardized retinopathy score. A single intravitreal injection of 5-amino-2-NMS reduces significantly angioproliferative changes (blood vessel tufts, extra-retinal neovascularization, and blood vessel tortuosity) compared to the contralateral control eye (p=0.025). The median retinopathy score (maximal 13) for the 5-amino-2-NMS treated eyes was 6 versus 8 for the control eyes. 5-Amino-2-NMS binds to the heparin-binding site of FGF1 and FGF2 and thus may be a promising substance for the local treatment of retinal neovascularization.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Naftalenossulfonatos/uso terapêutico , Neovascularização Retiniana/tratamento farmacológico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Injeções , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Corpo Vítreo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...