Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141334

RESUMO

Recently, we have developed software that allows, using a minimum of required experimental data, to find the characteristics of ion homeostasis and a list of all unidirectional fluxes of monovalent ions through the main pathways in the cell membrane both in a balanced state and during the transient processes. Our approach has been successfully validated in human proliferating lymphoid U937 cells during transient processes after stopping the Na/K pump by ouabain and for staurosporine-induced apoptosis. In present study, we used this approach to find the characteristics of ion homeostasis and the monovalent ion fluxes through the cell membrane of human erythrocytes in a resting state and during the transient processes after stopping the Na/K pump with ouabain and in response to osmotic challenge. Due to their physiological significance, erythrocytes remain the object of numerous studies, both experimental and computational methods. Calculations showed that, under physiological conditions, the K+ fluxes through electrodiffusion channels in the entire erythrocyte ion balance is small compared to the fluxes through the Na/K pump and cation-chloride cotransporters. The proposed computer program well predicts the dynamics of the erythrocyte ion balance disorders after stopping the Na/K pump with ouabain. In full accordance with predictions, transient processes in human erythrocytes are much slower than in proliferating cells such as lymphoid U937 cells. Comparison of real changes in the distribution of monovalent ions under osmotic challenge with the calculated ones indicates a change in the parameters of the ion transport pathways through the plasma membrane of erythrocytes in this case. The proposed approach may be useful in studying the mechanisms of various erythrocyte dysfunctions.


Assuntos
Ouabaína , ATPase Trocadora de Sódio-Potássio , Humanos , ATPase Trocadora de Sódio-Potássio/metabolismo , Células U937 , Ouabaína/farmacologia , Ouabaína/metabolismo , Membrana Celular/metabolismo , Transporte de Íons , Sódio/metabolismo , Eritrócitos/metabolismo , Cloretos/metabolismo , Potássio/metabolismo
2.
Cell Physiol Biochem ; 54(4): 556-566, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32462850

RESUMO

BACKGROUND/AIMS: Sodium is a key player in the fundamental cell functions. Fluorescent probes are indispensable tools for monitoring intracellular sodium levels in single living cells. Since the fluorescence of sodium-sensitive dyes in cells is significantly different from that in an aqueous solution, the fluorescence signal is calibrated in situ indirectly using ionophores for equalizing external and intracellular ion concentration. Attempts to compare data obtained using fluorescent probes and by direct flame emission analysis are sparse and results are inaccurate. METHODS: We determined the intracellular sodium concentration in U937 cells by flow cytometry using the Na+-sensitive probe Asante Natrium Green-2 (ANG), and by standard flame emission photometry combined with the cellular water determination by cell density in Percoll gradient. The intracellular Na+ concentrations was modified using known ionophores or, alternatively, by blocking the sodium pump with ouabain or by causing cell apoptosis with staurosporine. RESULTS: It is revealed that both methods are comparable when intracellular sodium concentration was modified by ouabain-mediated blockage of the sodium pump or staurosporine-induced apoptosis. The ANG fluorescence of cells treated with ionophores is approximately two times lower than that in cells with the same Na+ concentration but not treated with ionophores. Although the mechanism is still unknown, this effect should be taken into account when a quantitative assessment of the concentration of intracellular sodium is required. CONCLUSION: The sodium sensitive dye ANG-2 is a sensitive and useful probe for determination changes in Na+ content and concentration both in single cells and subcellular microparticles. The ANG fluorescence determined in the studied cells in the absence of ionophores, cannot be used as a measure of the real intracellular concentration of Na+ if calibration was carried out in the presence of ionophores.


Assuntos
Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Ionóforos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Calibragem , Linhagem Celular Tumoral , Citoplasma/metabolismo , Fluorescência , Gramicidina/farmacologia , Humanos , Íons , Ouabaína/farmacologia , Análise de Célula Única , Estaurosporina/farmacologia
3.
Cell Physiol Biochem ; 30(4): 964-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23221465

RESUMO

BACKGROUND/AIMS: Osmotic cell shrinkage is a powerful trigger of suicidal cell death or apoptosis, which is paralleled and enforced by apoptotic volume decrease (AVD). Cells counteract cell shrinkage by volume regulatory increase (RVI). The present study explored the response of human U937 cells to hypertonic solution thus elucidating the relationship between RVI and AVD. METHODS: Cell water, concentration of monovalent ions and the appearance of apoptotic markers were followed for 0.5-4 h after the cells were transferred to a hypertonic medium. Intracellular water, K+, Na+, and Cl- content, ouabain-sensitive and -resistant Rb+ influxes were determined by measurement of the cell buoyant density in Percoll density gradient, flame emission analysis and 36Cl- assay, respectively. Fluorescent microscopy of live cells stained by acridine orange and ethidium bromide was used to verify apoptosis. RESULTS: After 2-4 h incubation in hypertonic media the cell population was split into light (L) and heavy (H) fractions. According to microscopy and analysis of monovalent ions the majority of cells in the L population were healthy, while the H fractions were enriched with apoptotic cells. The density of L cells was decreasing with time, while the density of H cells was increasing, thus reflecting the opposite effects of RVI and AVD. At the same time, some of the cells were shifting from L to H fractions, indicating that apoptosis was gradually extending to cells that were previously displaying normal RVI. CONCLUSION: The findings suggest that apoptosis can develop in cells capable of RVI.


Assuntos
Apoptose , Leucemia/metabolismo , Leucemia/patologia , Tamanho Celular , Cloro/metabolismo , Humanos , Pressão Osmótica , Potássio/metabolismo , Sódio/metabolismo , Células U937 , Água/metabolismo
4.
Eur J Heart Fail ; 14(6): 571-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467752

RESUMO

AIMS: Ca(2+)-induced Ca(2+) release (CICR) is critical for contraction in cardiomyocytes. The transverse (t)-tubule system guarantees the proximity of the triggers for Ca(2+) release [L-type Ca(2+) channel, dihydropyridine receptors (DHPRs)] and the sarcoplasmic reticulum Ca(2+) release channels [ryanodine receptors (RyRs)]. Transverse tubule disruption occurs early in heart failure (HF). Clinical studies of left ventricular assist devices in HF indicate that mechanical unloading induces reverse remodelling. We hypothesize that unloading of failing hearts normalizes t-tubule structure and improves CICR. METHODS AND RESULTS: Heart failure was induced in Lewis rats by left coronary artery ligation for 12 weeks; sham-operated animals were used as controls. Failing hearts were mechanically unloaded for 4 weeks by heterotopic abdominal heart transplantation (HF-UN). HF reduced the t-tubule density measured by di-8-ANEPPS staining in isolated left ventricular myocytes, and this was reversed by unloading. The deterioration in the regularity of the t-tubule system in HF was also reversed in HF-UN. Scanning ion conductance microscopy showed the reappearance of normal surface striations in HF-UN. Electron microscopy revealed recovery of normal t-tubule microarchitecture in HF-UN. L-type Ca(2+) current density, measured using whole-cell patch clamping, was reduced in HF but unaffected by unloading. The variance of the time-to-peak of the Ca(2+) transient, an index of CICR dyssynchrony, was increased in HF and normalized by unloading. The increased Ca(2+) spark frequency observed in HF was reduced in HF-UN. These results could be explained by the recoupling of orphaned RyRs in HF, as indicated by immunofluorescence. CONCLUSIONS: Our data show that mechanical unloading of the failing heart reverses the pathological remodelling of the t-tubule system and improves CICR.


Assuntos
Canais de Cálcio Tipo T , Insuficiência Cardíaca/patologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Análise de Variância , Animais , Modelos Animais de Doenças , Progressão da Doença , Coração Auxiliar , Masculino , Ratos , Ratos Endogâmicos Lew , Volume Sistólico , Função Ventricular Esquerda , Remodelação Ventricular
5.
Arterioscler Thromb Vasc Biol ; 31(2): 384-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21127291

RESUMO

OBJECTIVE: The goal of this study was to examine the effect of chronic heterogeneous shear stress, applied using an orbital shaker, on endothelial cell morphology and the expression of cyclooxygenases 1 and 2. METHODS AND RESULTS: Porcine aortic endothelial cells were plated on fibronectin-coated Transwell plates. Cells were cultured for up to 7 days either under static conditions or on an orbital shaker that generated a wave of medium inducing shear stress over the cells. Cells were fixed and stained for the endothelial surface marker CD31 or cyclooxygenases 1 and 2. En face confocal microscopy and scanning ion conductance microscopy were used to show that endothelial cells were randomly oriented at the center of the well, aligned with shear stress nearer the periphery, and expressed cyclooxygenase-1 under all conditions. Lipopolysaccharide induced cyclooxygenase-2 and the production of 6-keto-prostaglandin F(1α) in all cells. CONCLUSIONS: Cyclooxygenase-1 is expressed in endothelial cells cultured under chronic shear stress of high or low directionality.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Estresse Mecânico , 6-Cetoprostaglandina F1 alfa/metabolismo , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Contagem de Células , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Isoenzimas/metabolismo , Lipopolissacarídeos/farmacologia , Modelos Animais , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Suínos
6.
PLoS One ; 5(3): e9689, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20300620

RESUMO

BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC), which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2) receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2) receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2) receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Ácidos e Sais Biliares/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Receptor Muscarínico M2/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Colestase/induzido quimicamente , Inativação Gênica , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Receptor Muscarínico M2/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
J Cell Mol Med ; 13(9B): 3730-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19438812

RESUMO

Embryonic stem cell-derived cardiomyocytes (ESC-CM) have many of the phenotypic properties of authentic cardiomyocytes, and great interest has been shown in their possibilities for modelling human disease. Obstetric cholestasis affects 1 in 200 pregnant women in the United Kingdom. It is characterized by raised serum bile acids and complicated by premature delivery and unexplained fetal death at late gestation. It has been suggested that the fetal death is caused by the enhanced arrhythmogenic effect of bile acids in the fetal heart, and shown that neonatal susceptibility to bile acid-induced arrhythmia is lost in the adult rat cardiomyocyte. However, the mechanisms of the observed bile acid effects are not fully understood and their in vivo study in human beings is difficult. Here we use ESC-CM from both human and mouse ESCs to test our proposal that immature cardiomyocytes are more susceptible to the effect of raised bile acids than mature ones. We show that early ESC-CM exhibit bile acid-induced disruption of rhythm, depression of contraction and desynchronization of cell coupling. In both species the ESC-CM become resistant to these arrhythmias as the cells mature, and this develops in line with the respective gestational periods of mouse and human. This represents the first demonstration of the use of ESC-CM as a model system for human cardiac pathology, and opens the way for both investigation of mechanisms and a high throughput screen for drug discovery.


Assuntos
Arritmias Cardíacas/patologia , Ácidos e Sais Biliares/metabolismo , Doenças Fetais/patologia , Miócitos Cardíacos/citologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Colestase/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Gravidez , Complicações Cardiovasculares na Gravidez , Fatores de Tempo
8.
Cell Physiol Biochem ; 22(1-4): 187-94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18769045

RESUMO

Ouabain-sensitive (OS) and -resistant (OR) Rb(+) influx was examined in three sublines of U937 cells to compare alterations of K(+) channel permeability and the Na(+),K(+)-ATPase pump leading to the shift in ion and water balance during apoptosis induced by 0.2 and 1microM staurosporine (STS) for 4-5 h. Cell K(+), Rb(+), Na(+) and Cl(-) content was determined by flame photometry and (36)Cl distribution. Changes in cell water content were monitored by measurement of buoyant cell density and distribution of [(3)H]-glycerol or 3-O-methyl-D-[(3)H]glucose. Apoptosis was detected by DNA flow cytometry and light microscopy of the native cells stained with acridine orange. Treatment with 0.2 microM STS for 5 hours led to mild apoptosis with 10-13 % cell dehydration and either moderate increase of channel mediated Rb(+) influx without significant changes in the pump activity or moderate decrease of pump Rb(+) influx without significant change of channel influx, depending on the cell line used. Treatment with 1 microM STS was followed by 18-23 % cell dehydration, a decrease of the pump activity and a small or insignificant increase in the OR Rb(+) influx in all studied sublines. It is concluded that moderate apoptotic cell shrinkage may be associated with both an increase in K(+) channel permeability and inhibition of the pump whereas more remarkable shrinkage occurs presumably due to inhibition of the pump.


Assuntos
Apoptose , Linfócitos/citologia , Canais de Potássio/metabolismo , Rubídio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Apoptose/efeitos dos fármacos , Bumetanida/farmacologia , DNA/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Microscopia Confocal , Ouabaína/farmacologia , Estaurosporina/farmacologia , Células U937
9.
Cell Physiol Biochem ; 16(1-3): 15-22, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16121029

RESUMO

The mechanism of apoptotic cell volume decrease was studied in rat thymocytes treated with dexamethasone (Dex) or etoposide (Eto). Cell shrinkage, i.e. dehydration, was quantified by using buoyant density of the thymocytes in a continuous Percoll gradient. The K+ and Na+ content of cells from different density fractions were assayed by flame emission analysis. Apoptosis was tested by microscopy and flow cytometry of acridine orange stained cells as well as by flow DNA cytometry. Treatment of the thymocytes with 1 microM Dex for 4-5.5 h or 50 microM Eto for 5 h resulted in the appearance of a new distinct high-density cell subpopulation. The cells from this heavy subpopulation but not those with normal buoyant density had typical features of apoptosis. Apoptotic increase of cell density was accompanied by a decrease in cellular K+ content, which exceeded the simultaneous increase in cellular Na+ content. Cellular loss of K+ contributed to most of the estimated loss of cellular osmolytes, but owing to the parallel loss of cell water, the decrease in cytosolic K+ concentration was less than one third. Due to gain of Na+ and loss of cell water the cytosolic Na+ concentration in thymocytes rose following treatment with Dex (5.5 h) or Eto (5 h) by a factor of about 3.6 and 3.1, respectively.


Assuntos
Dexametasona/farmacologia , Etoposídeo/farmacologia , Potássio/metabolismo , Sódio/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Ratos , Linfócitos T/citologia , Água/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...