Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Front Vet Sci ; 11: 1202931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545561

RESUMO

The applicability of electrical impedance tomography (EIT) in birds is unknown. This study aimed to evaluate the use of EIT in anaesthetised chickens in four recumbency positions. Four adult Hyline chickens were anaesthetised with isoflurane in oxygen, and intubated endotracheally for computed tomography (CT). A rubber belt was placed around the coelom caudal to the shoulder joint. A chicken-specific finite element (FE) model, which is essential to generate anatomically accurate functional EIT images for analysis, was constructed based on the CT images obtained at the belt level. Ten additional chickens were anaesthetised with the same protocol. An EIT electrode belt was placed at the same location. The chickens were breathing spontaneously and positioned in dorsal, ventral, right and left lateral recumbency in a randomised order. For each recumbency, raw EIT data were collected over 2 min after 13 min of stabilisation. The data were reconstructed into functional EIT images. EIT variables including tidal impedance variation (TIV), centre of ventilation right to left (CoVRL) and ventral to dorsal (CoVVD), right to left (RL) ratio, impedance change (ΔZ) and eight regional impedance changes including the dorsal, central-dorsal, central-ventral and ventral regions of the right and left regions were analysed. Four breathing patterns (BrP) were observed and categorised based on the expiratory curve. A linear mixed model was used to compare EIT variables between recumbencies. Fisher's exact test was used to compare the frequencies of breathing patterns for each recumbency. The ΔZ observed was synchronous to ventilation, and represented tidal volume of the cranial air sacs as confirmed by CT. Significant differences were found in CoVVD and regional impedance changes between dorsal and ventral recumbencies (P < 0.05), and in CoVRL, RL ratio and regional impedance changes between right and left recumbencies (P < 0.05), which suggested a tendency for the distribution of ventilation to shift towards non-dependent air sacs. No differences were found for TIV and respiratory rate between recumbencies. Recumbency had a significant effect on the frequencies of each of the four BrPs (P = 0.001). EIT can monitor the magnitude and distribution of ventilation of the cranial air sacs in different recumbencies in anaesthetised chickens.

2.
Physiol Meas ; 45(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38422515

RESUMO

Objective. Data from two-plane electrical impedance tomography (EIT) can be reconstructed into various slices of functional lung images, allowing for more complete visualisation and assessment of lung physiology in health and disease. The aim of this study was to confirm the ability of 3D EIT to visualise normal lung anatomy and physiology at rest and during increased ventilation (represented by rebreathing).Approach. Two-plane EIT data, using two electrode planes 20 cm apart, were collected in 20 standing sedate horses at baseline (resting) conditions, and during rebreathing. EIT data were reconstructed into 3D EIT whereby tidal impedance variation (TIV), ventilated area, and right-left and ventral-dorsal centres of ventilation (CoVRLand CoVVD, respectively) were calculated in cranial, middle and caudal slices of lung, from data collected using the two planes of electrodes.Main results. There was a significant interaction of time and slice for TIV (p< 0.0001) with TIV increasing during rebreathing in both caudal and middle slices. The ratio of right to left ventilated area was higher in the cranial slice, in comparison to the caudal slice (p= 0.0002). There were significant effects of time and slice on CoVVDwhereby the cranial slice was more ventrally distributed than the caudal slice (p< 0.0009 for the interaction).Significance. The distribution of ventilation in the three slices corresponds with topographical anatomy of the equine lung. This study confirms that 3D EIT can accurately represent lung anatomy and changes in ventilation distribution during rebreathing in standing sedate horses.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Animais , Cavalos , Volume de Ventilação Pulmonar/fisiologia , Impedância Elétrica , Tomografia/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia
3.
Front Physiol ; 14: 1164646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476683

RESUMO

Electrical impedance tomography (EIT) is a non-invasive diagnostic tool for evaluating lung function. The objective of this study was to compare respiratory flow variables calculated from thoracic EIT measurements with corresponding spirometry variables. Ten healthy research horses were sedated and instrumented with spirometry via facemask and a single-plane EIT electrode belt around the thorax. Horses were exposed to sequentially increasing volumes of apparatus dead space between 1,000 and 8,500 mL, in 5-7 steps, to induce carbon dioxide rebreathing, until clinical hyperpnea or a tidal volume of 150% baseline was reached. A 2-min stabilization period followed by 2 minutes of data collection occurred at each timepoint. Peak inspiratory and expiratory flow, inspiratory and expiratory time, and expiratory nadir flow, defined as the lowest expiratory flow between the deceleration of flow of the first passive phase of expiration and the acceleration of flow of the second active phase of expiration were evaluated with EIT and spirometry. Breathing pattern was assessed based on the total impedance curve. Bland-Altman analysis was used to evaluate the agreement where perfect agreement was indicated by a ratio of EIT:spirometry of 1.0. The mean ratio (bias; expressed as a percentage difference from perfect agreement) and the 95% confidence interval of the bias are reported. There was good agreement between EIT-derived and spirometry-derived peak inspiratory [-15% (-46-32)] and expiratory [10% (-32-20)] flows and inspiratory [-6% (-25-18)] and expiratory [5% (-9-20)] times. Agreement for nadir flows was poor [-22% (-87-369)]. Sedated horses intermittently exhibited Cheyne-Stokes variant respiration, and a breath pattern with incomplete expiration in between breaths (crown-like breaths). Electrical impedance tomography can quantify airflow changes over increasing tidal volumes and changing breathing pattern when compared with spirometry in standing sedated horses.

4.
J Vet Pharmacol Ther ; 46(6): 353-364, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37211671

RESUMO

Doxapram is marketed as a respiratory stimulant and is used by some veterinarians to help with neonatal apnoea, especially in puppies delivered by caesarean. There is a lack of consensus as to whether the drug is effective and data on its safety are limited. Doxapram was compared to placebo (saline) in newborn puppies in a randomized, double-blinded clinical trial using two outcome measures: 7-day mortality rate and repeated APGAR score measurements. Higher APGAR scores have been positively correlated with survival and other health outcomes in newborns. Puppies were delivered by caesarean and a baseline APGAR score was measured. This was immediately followed by a randomly allocated intralingual injection of either doxapram or isotonic saline (of the same volume). Injection volumes were determined by the weight of the puppy and each injection was administered within a minute of birth. The mean dose of doxapram administered was 10.65 mg/kg. APGAR scores were measured again at 2, 5, 10 and 20 min. One hundred and seventy-one puppies from 45 elective caesareans were recruited into this study. Five out of 85 puppies died after receiving saline and 7 out of 86 died after receiving doxapram. Adjusting for the baseline APGAR score, the age of the mother and whether the puppy was a brachycephalic breed, there was insufficient evidence to conclude a difference in the odds of 7-day survival for puppies that received doxapram compared to those that received saline (p = .634). Adjusting for the baseline APGAR score, the weight of the mother, the litter size, the mother's parity number, the weight of the puppy and whether the puppy was a brachycephalic breed, there was insufficient evidence to conclude a difference in the probability of a puppy having an APGAR score of ten (the maximum APGAR score) between those that received doxapram compared to those that received saline (p = .631). Being a brachycephalic breed was not associated with an increased odds of 7-day mortality (p = .156) but the effect of the baseline APGAR score on the probability of having an APGAR score of ten was higher for brachycephalic than non-brachycephalic breeds (p = .01). There was insufficient evidence that intralingual doxapram provided an advantage (or disadvantage) compared to intralingual saline when used routinely in puppies delivered by elective caesarean and that were not apnoeic.


Assuntos
Cesárea , Doxapram , Gravidez , Feminino , Animais , Cães , Animais Recém-Nascidos , Doxapram/uso terapêutico , Índice de Apgar , Tamanho da Ninhada de Vivíparos , Cesárea/veterinária
5.
J Vet Intern Med ; 37(3): 1233-1242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051768

RESUMO

BACKGROUND: Continuous positive airway pressure (CPAP) and pressure support ventilation (PSV) can improve respiratory mechanics and gas exchange, but different airway pressures have not been compared in foals. HYPOTHESIS/OBJECTIVES: Assess the effect of different airway pressures during CPAP and PSV have on respiratory function in healthy foals with pharmacologically induced respiratory insufficiency. We hypothesized that increased airway pressures would improve respiratory mechanics and increased positive end-expiratory pressure (PEEP) would be associated with hypercapnia. ANIMALS: Six healthy foals from a university teaching herd. METHODS: A prospective, 2-phase, 2-treatment, randomized cross-over study design was used to evaluate sequential interventions in sedated foals using 2 protocols (CPAP and PSV). Outcome measures included arterial blood gases, spirometry, volumetric capnography, lung volume and aeration assessed using computed tomography (CT). RESULTS: Sedation and dorsal recumbency were associated with significant reductions in arterial oxygen pressure (PaO2 ), respiratory rate, and tidal volume. Continuous positive airway pressure was associated with improved PaO2 , without concurrent hypercapnia. Volumetric capnography identified improved ventilation:perfusion (V/Q) matching and increased carbon dioxide elimination during ventilation, and spirometry identified decreased respiratory rate and increased tidal volume. Peak inspiratory pressure was moderately associated with PaO2 and lung volume. Improved pulmonary aeration was evident in CT images, and lung volume was increased, particularly during CPAP. CONCLUSIONS AND CLINICAL IMPORTANCE: Both CPAP and PSV improved lung mechanics and gas exchange in healthy foals with induced respiratory insufficiency.


Assuntos
Doenças dos Cavalos , Insuficiência Respiratória , Cavalos , Animais , Hipercapnia/veterinária , Estudos Prospectivos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/veterinária , Mecânica Respiratória , Insuficiência Respiratória/veterinária , Doenças dos Cavalos/terapia
6.
Front Vet Sci ; 10: 1275013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239750

RESUMO

Respiratory disease in cattle is a significant global concern, yet current diagnostic methods are limited, and there is a lack of crush-side tests for detecting active disease. To address this gap, we propose utilizing electrical impedance tomography (EIT), a non-invasive imaging technique that provides real-time visualization of lung ventilation dynamics. The study included adult cattle from farms in Western Australia. The cattle were restrained in a crush. A standardized respiratory scoring system, which combined visual, auscultation, and clinical scores, was conducted by two non-conferring clinicians for each animal. The scores were blinded and averaged. During assessment, an EIT electrode belt was placed around the thorax. EIT recordings of ten suitable breaths were taken for analysis before the cattle were released back to the herd. Based on the combined examination scoring, the cattle were categorized as having healthy or diseased lungs. To allow visual interpretation of each breath and enable the creation of the quartile ventilation ratio (VQR), Flow/Tidal Impedance Variation curves (F/TIV) were generated for each breath. The analysis focused on two EIT variables: The novel VQR over time during inhalation and exhalation and global expiratory impedance (TIVEXP) adjusted by breath length. A mixed effects model was used to compare these variables between healthy and diseased cattle. Ten adult cattle of mixed ages were used in the current analysis. Five cattle were scored as healthy and five as diseased. There was a significant difference in the examination scores between the healthy and diseased group (P = 0.03). A significant difference in VQR during inhalation (P = 0.03) was observed between the healthy and diseased groups. No difference was seen in VQR over time during exhalation (P = 0.3). The TIVEXP was not different between groups (P = 0.36). In this study, EIT was able to detect differences in inhalation mechanics when comparing healthy and diseased cattle as defined via clinical examination, highlighting the clinical utility of EIT.

7.
Vet Rec ; 191(12): e2184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197754

RESUMO

BACKGROUND: Electrical impedance tomography (EIT) produces lung ventilation images via a thoracic electrode belt. Robust electrode design and material, providing low electrode skin contact impedance (SCI), is needed in veterinary medicine. The aim of this study was to compare three EIT electrode designs and materials. METHODS: Simulations of cylindrical, rectangular and spiked electrode designs were used to evaluate electrode SCI as a function of electrode size, where skin contact was uneven. Gold-plated washers (EGW ), zinc-plated rivets (EZR ) and zinc-galvanised spikes (EZS ) were assigned randomly on two interconnected EIT belts. Gel was applied to the cranial or caudal belt and placed on 17 standing cattle. SCI was recorded at baseline and 3, 5, 7, 9 and 11 minutes later. RESULTS: Simulations that involved electrodes with a greater skin contact area had lower and more uniform SCI. In cattle, SCI decreased with all electrodes over time (p < 0.01). Without gel, no difference was found between EGW and EZS , while SCI was higher for EZR (p < 0.03). With gel, SCI was lower in EGW and EZR (p < 0.026), with the SCI in EGW being the lowest (p < 0.01). LIMITATIONS: Low numbers of animals and static electrode position may affect SCI. CONCLUSIONS: Electrode design is important for EIT measurement, with larger electrode designs able to compensate for the use of less conductive materials. Gel is not necessary to achieve acceptable SCI in large animals.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Animais , Bovinos , Tomografia/veterinária , Tomografia/métodos , Impedância Elétrica , Eletrodos , Zinco
8.
Vet Anaesth Analg ; 49(6): 645-649, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36064498

RESUMO

OBJECTIVE: To describe some cardiorespiratory effects of an inspiratory-to-expiratory (IE) ratio of 1:1 compared with 1:3 in ventilated horses in dorsal recumbency. STUDY DESIGN: Randomized crossover experimental study. ANIMALS: A total of eight anesthetized horses, with 444 (330-485) kg body weight [median (range)]. METHODS: Horses were ventilated in dorsal recumbency with a tidal volume of 15 mL kg-1 and a respiratory rate of 8 breaths minute-1, and IE ratios of 1:1 (IE1:1) and 1:3 (IE1:3) in random order, each for 25 minutes after applying a recruitment maneuver. Spirometry, arterial blood gases and dobutamine requirements were recorded in all horses during each treatment. Electrical impedance tomography (EIT) data were recorded in four horses and used to generate functional EIT variables including regional ventilation delay index (RVD), a measure of speed of lung inflation, and end-expiratory lung impedance (EELI), an indicator of functional residual capacity (FRC). Results were assessed with linear and generalized linear mixed models. RESULTS: Compared with treatment IE1:3, horses ventilated with treatment IE1:1 had higher mean airway pressures and respiratory system compliance (p < 0.014), while peak, end-inspiratory and driving airway pressures were lower (p < 0.001). No differences in arterial oxygenation or dobutamine requirements were observed. PaCO2 was lower in treatment IE1:1 (p = 0.039). Treatment IE1:1 resulted in lower RVD (p < 0.002) and higher EELI (p = 0.023) than treatment IE1:3. CONCLUSIONS AND CLINICAL RELEVANCE: These results suggest that IE1:1 improved respiratory system mechanics and alveolar ventilation compared with IE1:3, whereas oxygenation and dobutamine requirements were unchanged, although differences were small. In the four horses where EIT was evaluated, IE1:1 led to a faster inflation rate of the lung, possibly the result of increased FRC. The clinical relevance of these findings needs to be further investigated.


Assuntos
Dobutamina , Respiração com Pressão Positiva , Cavalos , Animais , Volume de Ventilação Pulmonar , Respiração com Pressão Positiva/veterinária , Gasometria/veterinária , Respiração , Impedância Elétrica
9.
Front Vet Sci ; 9: 946911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937293

RESUMO

Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis.

10.
Front Vet Sci ; 9: 895268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836499

RESUMO

Equine respiratory physiology might be influenced by the presence of an endotracheal tube (ETT). This experimental, randomized cross-over study aimed to compare breathing pattern (BrP) and ventilation distribution in anesthetized horses spontaneously breathing room air via ETT or facemask (MASK). Six healthy adult horses were anesthetized with total intravenous anesthesia (TIVA; xylazine, ketamine, guaiphenesin), breathing spontaneously in right lateral recumbency, and randomly assigned to ETT or MASK for 30 min, followed by the other treatment for an additional 30 min. During a second anesthesia 1 month later, the treatment order was inversed. Electrical impedance tomography (EIT) using a thoracic electrode belt, spirometry, volumetric capnography, esophageal pressure difference (ΔPoes), venous admixture, and laryngoscopy data were recorded over 2 min every 15 min. Breaths were classified as normal or alternate (sigh or crown-like) according to the EIT impedance curve. A mixed linear model was used to test the effect of treatment on continuous outcomes. Cochran-Mantel-Haenszel analysis was used to test for associations between global BrP and treatment. Global BrP was associated with treatment (p = 0.012) with more alternate breaths during ETT. The center of ventilation right-to-left (CoVRL) showed more ventilation in the non-dependent lung during ETT (p = 0.025). The I:E ratio (p = 0.017) and ΔPoes (p < 0.001) were smaller, and peak expiratory flow (p = 0.009) and physiologic dead space (p = 0.034) were larger with ETT. The presence of an ETT alters BrP and shifts ventilation toward the non-dependent lung in spontaneously breathing horses anesthetized with TIVA.

11.
Physiol Meas ; 43(3)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322796

RESUMO

Objective. A linear relationship between impedance change (ΔZ) measured by thoracic electrical impedance tomography (EIT) and tidal volume (VT) has been demonstrated. This study evaluated the agreement between the displayed VT calculated by the EIT software (VTEIT) and spirometry (VTSPIRO) after an indirect two-point calibration.Approach.The EIT software was programmed to execute a bedside two-point calibration from the subject-specific, linear equation defining the relationship between ΔZand VTSPIROand displaying VTEITbreath-by-breath in 20 neutered male, juvenile pigs. After EIT calibration VTs of 8, 12, 16 and 20 ml kg-1were applied to the lungs. VTEITand VTSPIROwere recorded and analysed using Bland-Altman plot for multiple subject measurements. Volumetric capnography (VCap) and spirometry data were explored as components of variance using multiple regression.Main results.A mean relative difference (bias) of 0.7% with 95% confidence interval (CI) of -10.4% to 10.7% were found between VTEITand VTSPIROfor the analysed data set. The variance in VTEITcould not be explained by any of the measured VCap or spirometry variables.Significance.The narrow CI estimated in this study allows the conclusion that EIT and its software can be used to measure and accurately convert ΔZinto mililitre VT at the bedside after applying an indirect two-point calibration.


Assuntos
Tomografia , Animais , Calibragem , Impedância Elétrica , Medidas de Volume Pulmonar/métodos , Masculino , Suínos , Volume de Ventilação Pulmonar , Tomografia/métodos
12.
Animals (Basel) ; 12(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35158562

RESUMO

The objective was to document the use of spirometry and ventilation settings in small animal anaesthesia and intensive care through a descriptive, open, online, anonymous survey. The survey was advertised on social media and via email. Participation was voluntary. The google forms platform was used. It consisted of eight sections in English: demographic information, use of spirometry in spontaneously ventilating/mechanically ventilated dogs, need for spirometry, equipment available and calibration status, ventilation modes, spirometry displays, compliance (CRS) and resistance (RRS) of the respiratory system. Simple descriptive analyses were applied. There were 128 respondents. Respondents used spirometry more in ventilated dogs than during spontaneous breathing. Over 3/4 of the respondents considered spirometry essential in "selected" (43%) or "most" cases (33%). Multiple devices and technologies were used. The majority of the respondents were not directly involved in or informed about the calibration of their equipment. Of all displays, pressure-volume loops were the most common. Values of CRS and RRS were specifically monitored in more than 50% of cases by 44% of the respondents only. A variety of ventilation modes was used. Intensivists tend to use smaller VT than anaesthetists. More information on reference intervals of CRS and RRS and technical background on spirometers is required.

13.
Front Vet Sci ; 9: 1075791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713868

RESUMO

Background: This study aimed to compare the distribution of ventilation measured by electrical impedance tomography (EIT), in foals under varying clinical conditions of sedation, postural changes, and continuous positive airway pressure (CPAP). To support the interpretation of EIT variables, specific spirometry data and F-shunt calculation were also assessed. Materials and methods: Six healthy Thoroughbred foals were recruited for this sequential experimental study. EIT and spirometry data was recorded: (1) before and after diazepam-sedation, (2) after moving from standing to right lateral recumbency, (3) in dorsal recumbency during no CPAP (CPAP0) and increasing levels of CPAP of 4, 7, and 10 cmH2O (CPAP4, 7, 10, respectively). Ventral to dorsal (COVVD) and right to left (COVRL) center of ventilation, silent spaces, tidal impedance variation, regional ventilation distribution variables and right to left lung ventilation ratio (R:L) were extracted. Minute ventilation was calculated from tidal volume (VT) and respiratory rate. F-Shunt was calculated from results of arterial blood gas analysis. Statistical analysis was performed using linear mixed effects models (significance determined at p < 0.05). Results: (1) Respiratory rate was lower after sedation (p = 0.0004). (2) In right lateral recumbency (compared to standing), the COVVD (p = 0.0012), COVRL (p = 0.0057), left centro-dorsal (p = 0.0071) and dorsal (p < 0.0001) regional ventilation were higher, while the right ventral (p = 0.0016) and dorsal (p = 0.0145) regional ventilation, and R:L (p = 0.0017) were lower. (3) Data of two foals for CPAP10 was excluded from statistical analysis due to prolonged apnea. Stepwise increase of CPAP led to increases of COVVD (p = 0.0028) and VT (p = 0.0011). A reduction of respiratory rate was detected with increasing CPAP levels (p < 0.0001). Conclusions: (1) In healthy foals, diazepam administration did not alter distribution of ventilation or minute ventilation, (2) lateral recumbency results in collapse of dependent areas of the lung, and (3) the use of CPAP in dorsal recumbency at increasing pressures improves ventilation in dependent regions, suggesting improvement of ventilation-perfusion mismatch.

14.
Animals (Basel) ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827949

RESUMO

Several aspects of postnatal pulmonary adaption in the bovine neonate remain unclear, particularly the dynamics and regional ventilation of the lungs. We used electric impedance tomography (EIT) to measure changes in ventilation in the first 3 weeks of life in 20 non-sedated neonatal calves born without difficulty in sternal recumbency. Arterial blood gas variables were determined in the first 24 h after birth. Immediately after birth, dorsal parts of the lungs had 4.53% ± 2.82% nondependent silent spaces (NSS), and ventral parts had 5.23% ± 2.66% dependent silent spaces (DSS). The latter increased in the first hour, presumably because of gravity-driven ventral movement of residual amniotic fluid. The remaining lung regions had good ventilation immediately after birth, and the percentage of lung regions with high ventilation increased significantly during the study period. The centre of ventilation was always dorsal to and on the right of the theoretical centre of ventilation. The right lung was responsible for a significantly larger proportion of ventilation (63.84% ± 12.74%, p < 0.00001) compared with the left lung. In the right lung, the centrodorsal lung area was the most ventilated, whereas, in the left lung, it was the centroventral area. Tidal impedance changes, serving as a surrogate for tidal volume, increased in the first 3 weeks of life (p < 0.00001). This study shows the dynamic changes in lung ventilation in the bovine neonate according to EIT measurements. The findings form a basis for the recognition of structural and functional lung disorders in neonatal calves.

15.
J Vet Intern Med ; 35(5): 2500-2510, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34505734

RESUMO

BACKGROUND: Equine asthma (EA) causes airflow impairment, which increases in severity with exercise. Electrical impedance tomography (EIT) is an imaging technique that can detect airflow changes in standing healthy horses during a histamine provocation test. OBJECTIVES: To explore EIT-calculated flow variables before and after exercise in healthy horses and horses with mild-to-moderate (MEA) and severe equine asthma (SEA). ANIMALS: Nine healthy horses 9 horses diagnosed with MEA and 5 with SEA were prospectively included. METHODS: Recordings were performed before and after 15 minutes of lunging. Absolute values from global and regional peak inspiratory (PIF, positive value) and expiratory (PEF, negative value) flows were calculated. Data were analyzed using a mixed model analysis followed by Bonferroni's multiple comparisons test to evaluate the impact of exercise and diagnosis on flow indices. RESULTS: Control horses after exercise had significantly lower global PEF and PIF compared to horses with SEA (mean difference [95% confidence interval, CI]: 0.0859 arbitrary units [AU; 0.0339-0.1379], P < .001 and 0.0726 AU [0.0264-0.1188], P = .001, respectively) and horses with MEA (0.0561 AU [0.0129-0.0994], P = .007 and 0.0587 AU [0.0202-0.0973], P = .002, respectively). No other significant differences were detected. CONCLUSIONS AND CLINICAL IMPORTANCE: Electrical impedance tomography derived PIF and PEF differed significantly between healthy horses and horses with SEA or MEA after exercise, but not before exercise. Differences between MEA and SEA were not observed, but the study population was small.


Assuntos
Asma , Doenças dos Cavalos , Animais , Asma/veterinária , Impedância Elétrica , Doenças dos Cavalos/diagnóstico por imagem , Cavalos , Pulmão , Respiração , Tomografia Computadorizada por Raios X
16.
J Vet Intern Med ; 35(5): 2511-2523, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347908

RESUMO

BACKGROUND: Left-sided cardiac volume overload (LCVO) can cause fluid accumulation in lung tissue changing the distribution of ventilation, which can be evaluated by electrical impedance tomography (EIT). OBJECTIVES: To describe and compare EIT variables in horses with naturally occurring compensated and decompensated LCVO and compare them to a healthy cohort. ANIMALS: Fourteen adult horses, including university teaching horses and clinical cases (healthy: 8; LCVO: 4 compensated, 2 decompensated). METHODS: In this prospective cohort study, EIT was used in standing, unsedated horses and analyzed for conventional variables, ventilated right (VAR) and left (VAL) lung area, linear-plane distribution variables (avg-max VΔZLine , VΔZLine ), global peak flows, inhomogeneity factor, and estimated tidal volume. Horses with decompensated LCVO were assessed before and after administration of furosemide. Variables for healthy and LCVO-affected horses were compared using a Mann-Whitney test or unpaired t-test and observations from compensated and decompensated horses are reported. RESULTS: Compared to the healthy horses, the LCVO cohort had significantly less VAL (mean difference 3.02; 95% confidence interval .77-5.2; P = .02), more VAR (-1.13; -2.18 to -.08; P = .04), smaller avg-max VΔZLLine (2.54; 1.07-4.00; P = .003) and VΔZLLine (median difference 5.40; 1.71-9.09; P = .01). Observation of EIT alterations were reflected by clinical signs in horses with decompensated LCVO and after administration of furosemide. CONCLUSIONS AND CLINICAL IMPORTANCE: EIT measurements of ventilation distribution showed less ventilation in the left lung of horses with LCVO and might be useful as an objective assessment of the ventilation effects of cardiogenic pulmonary disease in horses.


Assuntos
Volume Cardíaco , Pulmão , Animais , Impedância Elétrica , Cavalos , Pulmão/diagnóstico por imagem , Estudos Prospectivos , Tomografia Computadorizada por Raios X
17.
Animals (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068514

RESUMO

This study explores the application of electric impedance tomography (EIT) to estimate tidal volume (VT) by measuring impedance change per breath (∆Zbreath). Seventeen healthy horses were anaesthetised and mechanically ventilated for elective procedures requiring dorsal recumbency. Spirometric VT (VTSPIRO) and ∆Zbreath were recorded periodically; up to six times throughout anaesthesia. Part 1 assessed these variables at incremental delivered VT of 10, 12 and 15 mL/kg. Part 2 estimated VT (VTEIT) in litres from ∆Zbreath at three additional measurement points using a line of best fit obtained from Part 1. During part 2, VT was adjusted to maintain end-tidal carbon dioxide between 45-55 mmHg. Linear regression determined the correlation between VTSPIRO and ∆Zbreath (part 1). Estimated VTEIT was assessed for agreement with measured VTSPIRO using Bland Altman analysis (part 2). Marked variability in slope and intercepts was observed across horses. Strong positive correlation between ∆Zbreath and VTSPIRO was found in each horse (R2 0.9-0.99). The agreement between VTEIT and VTSPIRO was good with bias (LOA) of 0.26 (-0.36-0.88) L. These results suggest that, in anaesthetised horses, EIT can be used to monitor and estimate VT after establishing the individual relationship between these variables.

18.
J Vet Intern Med ; 35(4): 2035-2044, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33977584

RESUMO

BACKGROUND: Electrical impedance tomography (EIT) generates images of the lungs based on impedance change and was able to detect changes in airflow after histamine challenge in horses. OBJECTIVES: To confirm that EIT can detect histamine-provoked changes in airflow and subsequent drug-induced bronchodilatation. Novel EIT flow variables were developed and examined for changes in airflow. METHODS: Bronchoconstriction was induced using stepwise histamine bronchoprovocation in 17 healthy sedated horses. The EIT variables were recorded at baseline, after saline nebulization (control), at the histamine concentration causing bronchoconstriction (Cmax ) and 2 and 10 minutes after albuterol (salbutamol) administration. Peak global inspiratory (PIFEIT ) and peak expiratory EIT (PEFEIT ) flow, slope of the global expiratory flow-volume curve (FVslope ), steepest FVslope over all pixels in the lung field, total impedance change (surrogate for tidal volume; VTEIT ) and intercept on the expiratory FV curve normalized to VTEIT (FVintercept /VTEIT ) were indexed to baseline and analyzed for a difference from the control, at Cmax , 2 and 10 minutes after albuterol. Multiple linear regression explored the explanation of the variance of Δflow, a validated variable to evaluate bronchoconstriction using all EIT variables. RESULTS: At Cmax , PIFEIT , PEFEIT , and FVslope significantly increased whereas FVintercept /VT decreased. All variables returned to baseline 10 minutes after albuterol. The VTEIT did not change. Multivariable investigation suggested 51% of Δflow variance was explained by a combination of PIFEIT and PEFEIT . CONCLUSIONS AND CLINICAL IMPORTANCE: Changes in airflow during histamine challenge and subsequent albuterol administration could be detected by various EIT flow volume variables.


Assuntos
Broncoconstrição , Pulmão , Animais , Impedância Elétrica , Cavalos , Volume de Ventilação Pulmonar , Tomografia Computadorizada por Raios X
19.
Lab Anim ; 55(5): 443-452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33645310

RESUMO

Alpha2 receptor agonists (alpha2-agonists) are useful sedative and analgesic agents in sheep, but have adverse pulmonary effects, which are reportedly similar between different alpha2-agonists. This randomized crossover study compared pulmonary function after intravenous administration of an alpha2-agonist, either xylazine or an equipotent dose of medetomidine in 34 female sheep anaesthetized twice. Pulmonary function was assessed using spirometry, volumetric capnography, arterial blood gas analysis 1 min prior to, and 5 and 10 min after administration of the allocated alpha 2 agonist drug. Pulmonary structural changes were subsequently assessed using computed tomography (CT). Tachypnoea or hypoxaemia prompted reversal with atipamezole and exclusion of data. Data were analysed for a fixed effect of drug using a mixed effect linear model with significance set at p < 0.05. Ten sheep administered xylazine required atipamezole while none of sheep receiving medetomidine did. Xylazine produced significantly higher respiratory frequency, airway pressures, airway resistance and arterial carbon dioxide (CO2), and lower dynamic compliance, tidal volume, CO2 elimination and end tidal CO2 tension and arterial oxygen tension than medetomidine. This was associated with a significantly lower % of aerated tissue and higher % poorly and non-aerated tissue in CT images of sheep receiving xylazine versus medetomidine. In conclusion, xylazine administration produced marked decreases in pulmonary function, in ventilated isoflurane anaesthetized sheep, when compared to an equipotent dose of medetomidine when administered as an intravenous bolus supporting the use of medetomidine when alpha2-agonists are required.


Assuntos
Isoflurano , Medetomidina , Animais , Feminino , Estudos Cross-Over , Frequência Cardíaca , Hipnóticos e Sedativos , Injeções Intravenosas , Isoflurano/farmacologia , Medetomidina/farmacologia , Ovinos , Carneiro Doméstico , Xilazina/farmacologia
20.
J Appl Physiol (1985) ; 129(5): 1140-1149, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054661

RESUMO

This study used electrical impedance tomography (EIT) measurements of regional ventilation and perfusion to elucidate the reasons for severe gas exchange impairment reported in rhinoceroses during opioid-induced immobilization. EIT values were compared with standard monitoring parameters to establish a new monitoring tool for conservational immobilization and future treatment options. Six male white rhinoceroses were immobilized using etorphine, and EIT ventilation variables, venous admixture, and dead space were measured 30, 40, and 50 min after becoming recumbent in lateral position. Pulmonary perfusion mapping using impedance-enhanced EIT was performed at the end of the study period. The measured impedance (∆Z) by EIT was compared between pulmonary regions using mixed linear models. Measurements of regional ventilation and perfusion revealed a pronounced disproportional shift of ventilation and perfusion toward the nondependent lung. Overall, the dependent lung was minimally ventilated and perfused, but remained aerated with minimal detectable lung collapse. Perfusion was found primarily around the hilum of the nondependent lung and was minimal in the periphery of the nondependent and the entire dependent lung. These shifts can explain the high amount of venous admixture and physiological dead space found in this study. Breath holding redistributed ventilation toward dependent and ventral lung areas. The findings of this study reveal important pathophysiological insights into the changes in lung ventilation and perfusion during immobilization of white rhinoceroses. These novel insights might induce a search for better therapeutic options and is establishing EIT as a promising monitoring tool for large animals in the field.NEW & NOTEWORTHY Electrical impedance tomography measurements of regional ventilation and perfusion applied to etorphine-immobilized white rhinoceroses in lateral recumbency revealed a pronounced disproportional shift of the measured ventilation and perfusion toward the nondependent lung. The dependent lung was minimally ventilated and perfused, but still aerated. Perfusion was found primarily around the hilum of the nondependent lung. These shifts can explain the gas exchange impairments found in this study. Breath holding can redistribute ventilation.


Assuntos
Troca Gasosa Pulmonar , Respiração Artificial , Respiração , Animais , Impedância Elétrica , Pulmão , Masculino , Mamíferos , Ventilação Pulmonar , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...