Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(8): e2206167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504426

RESUMO

Broadband infrared (IR) absorption is sought after for wide range of applications. Graphene can support IR plasmonic waves tightly bound to its surface, leading to an intensified near-field. However, the excitation of graphene plasmonic waves usually relies on resonances. Thus, it is still difficult to directly obtain both high near-field intensity and high absorption rate in ultra-broad IR band. Herein, a novel method is proposed to directly realize high near-field intensity in broadband IR band by graphene coated manganous oxide microwires featured hierarchical nanostructures (HNSs-MnO@Gr MWs) both experimentally and theoretically. Both near-field intensity and IR absorption of HNSs-MnO@Gr MWs are enhanced by at least one order of magnitude compared to microwires with smooth surfaces. The results demonstrate that the HNSs-MnO@Gr MWs support vibrational sensing of small organic molecules, covering the whole fingerprint region and function group region. Compared with the graphene-flake-based enhancers, the signal enhancement factors reach a record high of 103 . Furthermore, just a single HNSs-MnO@Gr MW can be constructed to realize sensitively photoresponse with high responsivity (over 3000 V W-1 ) from near-IR to mid-IR. The graphene coated dielectric hierarchical micro/nanoplatform with enhanced near-field intensity is scalable and can harness for potential applications including spectroscopy, optoelectronics, and sensing.

2.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33674315

RESUMO

Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO2, resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.

3.
Analyst ; 145(9): 3440-3446, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32259176

RESUMO

Fentanyl and its analogs have been at the center of the opioid epidemic currently wreaking havoc in the United States. One major element in the opioid crisis is the growing number of clandestine fentanyl labs being reported by enforcement agencies. The development of new analytical methods for detecting and identifying fentanyl and its congeners is among the useful tools in our goal to limit the use of this dangerous family of narcotics. Herein we describe an analytical technique using surface-enhanced Raman spectroscopy (SERS) and a microfluidic device, for detecting fentanyl and two of its chemical precursors, despropionylfentanyl (4ANPP) and N-phenethyl-4-piperidinone (NPP). The vibrational spectra of this family of analytes are very similar, making them difficult to distinguish by traditional means. In addition to taking advantage of the sensitivity provided by SERS, we developed a chemometric approach utilizing a hierarchical partial least squares-discriminant analysis algorithm that allowed us to distinguish spectra that possess many similar features.


Assuntos
Fentanila/análise , Análise Espectral Raman/métodos , Analgésicos Opioides/análise , Análise Discriminante , Fentanila/análogos & derivados , Fentanila/química , Dispositivos Lab-On-A-Chip , Análise dos Mínimos Quadrados
4.
J Phys Chem Lett ; 11(5): 1947-1953, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32079400

RESUMO

Plasmonic optical antennas (POAs), often constructed from gold or silver nanostructures, can enhance the radiation efficiency of emitters coupled to POAs and are applied in surface-enhanced Raman spectroscopy (SERS) and light-emitting devices. Over the past four decades, radiation enhancement factors (REFs) of POA-emitter systems were considered to be difficult to calculate directly and have been predicted indirectly and approximately, assuming POAs are illuminated by electromagnetic plane waves without emitters. The validity of this approximation remains a significant open problem in SERS theory. Herein, we develop a method based on the rigorous optical reciprocity theorem for accurately calculating the REFs of emitters in nanoparticle-substrate nanogaps for single-molecule SERS and scanning probe-substrate nanogaps for tip-enhanced Raman spectroscopy. We show that the validity of the plane wave approximation breaks down if high-order plasmonic modes are excited. The as-developed method paves the way toward designing high-REF POA nanostructures for luminescence-related devices.

5.
ACS Nano ; 14(1): 28-117, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478375

RESUMO

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

7.
J Am Chem Soc ; 141(35): 13977-13986, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31436416

RESUMO

The chemical reactivity and/or the diffusion of Ag atoms or ions during thermal processing can cause irreversible structural damage, hindering the application of Ag nanowires (NWs) in transparent conducting films and other applications that make use of the material's nanoscale properties. Here, we describe a simple and effective method for growing monolayer SnO2 on the surface of Ag nanowires under ambient conditions, which protects the Ag nanowires from chemical and structural damage. Our results show that Sn2+ and Ag atoms undergo a redox reaction in the presence of water. First-principle simulations suggest a reasonable mechanism for SnO2 formation, showing that the interfacial polarization of the silver by the SnO2 can significantly reduce the affinity of Ag to O2, thereby greatly reducing the oxidation of the silver. The corresponding values (for example, before coating: 17.2 Ω/sq at 86.4%, after coating: 19.0 Ω/sq at 86.6%) show that the deposition of monolayer SnO2 enables the preservation of high transparency and conductivity of Ag. In sharp contrast to the large-scale degradation of pure Ag-NW films including the significant reduction of its electrical conductivity when subjected to a series of harsh corrosion environments, monolayer SnO2 coated Ag-NW films survive structurally and retain their electrical conductivity. Consequently, the thermal, electrical, and chemical stability properties we report here, and the simplicity of the technology used to achieve them, are among the very best reported for transparent conductor materials to date.

8.
Nat Commun ; 10(1): 2671, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209216

RESUMO

Plasmon-mediated chemical reactions (PMCRs) constitute a vibrant research field, advancing such goals as using sunlight to convert abundant precursors such as CO2 and water to useful fuels and chemicals. A key question in this burgeoning field which has not, as yet, been fully resolved, relates to the precise mechanism through which the energy absorbed through plasmonic excitation, ultimately drives such reactions. Among the multiple processes proposed, two have risen to the forefront: plasmon-increased temperature and generation of energetic charge carriers. However, it is still a great challenge to confidently separate these two effects and quantify their relative contribution to chemical reactions. Here, we describe a strategy based on the construction of a plasmonic electrode coupled with photoelectrochemistry, to quantitatively disentangle increased temperature from energetic charge carriers effects. A clear separation of the two effects facilitates the rational design of plasmonic nanostructures for efficient photochemical applications and solar energy utilization.

9.
J Am Chem Soc ; 141(20): 8053-8057, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31070906

RESUMO

Surface plasmons (SPs) are able to promote chemical reactions through the participation of the energetic charge carriers produced following plasmons decay. Using p-aminothiophenol (PATP) as a probe molecule, we used surface-enhanced Raman spectroscopy to follow the progress of its transformation, in situ, to investigate systematically the role of hot electrons and holes. The energetic carrier mediated PATP oxidation was found to occur even in the absence of oxygen, and was greatly influenced by the interface region near the gold surface. The observed reaction, which occurred efficiently on Au@TiO2 nanostructures, did not happen on bare gold nanoparticles (NPs) or core-shell nanostructures when a silicon oxide layer blocked access to the gold. Moreover, the product of the PATP oxidation with oxygen on Au@TiO2 nanostructures differed from what was obtained without oxygen, suggesting that the mechanism through which "hot holes" mediated the oxidation reaction was different from that operating with oxygen activated by hot electrons.

10.
Analyst ; 144(9): 3080-3087, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919846

RESUMO

Opioid overdose deaths resulting from heroin contaminated with the potent opioid agonist fentanyl, are currently a serious public health issue. A rapid and reliable method for identifying fentanyl-laced heroin could lead to reduced opioid overdose. Herein, we describe a strategy for detecting fentanyl at low concentrations in the presence of heroin, based on the significant hydrophobicity of fentanyl compared to heroin hydrochloride, by preferentially extracting trace concentrations of fentanyl using ultrasound-assisted emulsification microextraction using octanol as the extracting phase. Surface-enhanced Raman spectroscopy (SERS), is enabled by exposing the analyte to silver nanoparticle-coated SiO2 nanoparticles, designed to be stable in mixtures of octanol and ethanol. The sample is then loaded into an SU8/glass microfluidic device that is compatible with non-aqueous solutions. The SERS-active nanoparticles are aggregated by dielectrophoresis using microelectrodes embedded in the microfluidic channels, and the nanoparticle aggregates are interrogated using Raman spectroscopy. Using this method, we were able to reliably detect fentanyl from samples with as low as 1 : 10 000 (mol/mol) fentanyl-to-heroin ratio, improving the limits of detection of fentanyl-laced heroin samples by two orders of magnitude over current techniques. The described system could also be useful in chemical detection where rapid and robust preconcentration of trace hydrophobic analytes, and rapid SERS detection in non-aqueous solvents is indicated.


Assuntos
Contaminação de Medicamentos , Fentanila/análise , Heroína/análise , Drogas Ilícitas/análise , Técnicas Analíticas Microfluídicas/métodos , Análise Espectral Raman/métodos , Fentanila/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Dispositivos Lab-On-A-Chip , Limite de Detecção , Microextração em Fase Líquida , Nanopartículas Metálicas/química , Microeletrodos , Técnicas Analíticas Microfluídicas/instrumentação , Dióxido de Silício/química , Prata/química
11.
Analyst ; 144(5): 1818-1824, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30672922

RESUMO

Direct detection, or inferring the presence of illicit substances, is of great forensic and toxicological value. Surface-enhanced Raman spectroscopy (SERS) has been shown capable of detecting such molecules in a quick and sensitive manner. Herein we describe an analysis strategy for quantitation of low concentrations of three analytes (methamphetamine, cocaine, and papaverine) by SERS analysis using the citrate capping agent that initially saturates the silver nanoparticles' surface as an in situ standard. The citrate is subsequently displaced by the analyte to an extent dependent on the analyte's concentration in the analyte solution. A general model for the competitive adsorption of citrate and a target analyte was developed and used to determine the relative concentrations of the two species coexisting on the surface of the silver nanoparticles. To apply this model, classical least squares (CLS) was used to extract the relative SERS contribution of each of the two species in a given SERS spectrum, thereby accurately determining the analyte concentration in the sample solution. This approach, in essence, transforms citrate into a local standard against which the concentration of an analyte can be reliably determined.

12.
Anal Chem ; 90(13): 7930-7936, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29863841

RESUMO

Rapid chemical identification of drugs of abuse in biological fluids such as saliva is of growing interest in healthcare and law enforcement. Accordingly, a label-free detection platform that accepts biological fluid samples is of great practical value. We report a microfluidics-based dielectrophoresis-induced surface enhanced Raman spectroscopy (SERS) device, which is capable of detecting physiologically relevant concentrations of methamphetamine in saliva in under 2 min. In this device, iodide-modified silver nanoparticles are trapped and released on-demand using electrodes integrated in a microfluidic channel. Principal component analysis (PCA) is used to reliably distinguish methamphetamine-positive samples from the negative control samples. Passivation of the electrodes and flow channels minimizes microchannel fouling by nanoparticles, which allows the device to be cleared and reused multiple times.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Impedância Elétrica , Eletroforese , Análise de Componente Principal , Propriedades de Superfície
13.
Nanomedicine ; 14(4): 1279-1287, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29597048

RESUMO

Canine lower urinary tract neoplasia is a clinically important disease process that has high mortality due to late stage diagnosis and poorly durable response to treatment. Non-invasive diagnostic techniques (e.g. dipstick test, urine cytology) currently have poor diagnostic value, while more invasive tests (e.g. cystoscopy and biopsy) are costly and often require general anesthesia. We have developed and herein describe a quantitative cytological analysis method based on the use of surface-enhanced Raman spectroscopy (SERS), for identifying cancerous transitional cells in urine using SERS biotags (SBTs) carrying the peptide PLZ4 (amino acid sequence cQDGRMGFc) that targets malignant transitional cells. By analyzing the ratio of the PLZ4-SBTs to an on board control we were able to show that transitional cells had significantly higher ratios (P < 0.05) in patients diagnosed with transitional cell carcinoma (TCC) than in healthy samples.


Assuntos
Carcinoma de Células de Transição/diagnóstico , Análise Espectral Raman/métodos , Animais , Biomarcadores Tumorais/urina , Biópsia/métodos , Carcinoma de Células de Transição/urina , Cistoscopia/métodos , Cães , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina
14.
J Am Chem Soc ; 140(13): 4705-4711, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29485275

RESUMO

Single-molecule surface-enhanced Raman spectroscopy (SERS) offers new opportunities for exploring the complex chemical and biological processes that cannot be easily probed using ensemble techniques. However, the ability to place the single molecule of interest reliably within a hot spot, to enable its analysis at the single-molecule level, remains challenging. Here we describe a novel strategy for locating and securing a single target analyte in a SERS hot spot at a plasmonic nanojunction. The "smart" hot spot was generated by employing a thiol-functionalized cucurbit[6]uril (CB[6]) as a molecular spacer linking a silver nanoparticle to a metal substrate. This approach also permits one to study molecules chemically reluctant to enter the hot spot, by conjugating them to a moiety, such as spermine, that has a high affinity for CB[6]. The hot spot can accommodate at most a few, and often only a single, analyte molecule. Bianalyte experiments revealed that one can reproducibly treat the SERS substrate such that 96% of the hot spots contain a single analyte molecule. Furthermore, by utilizing a series of molecules each consisting of spermine bound to perylene bisimide, a bright SERS molecule, with polymethylene linkers of varying lengths, the SERS intensity as a function of distance from the center of the hot spot could be measured. The SERS enhancement was found to decrease as 1 over the square of the distance from the center of the hot spot, and the single-molecule SERS cross sections were found to increase with AgNP diameter.

15.
Nano Lett ; 18(2): 669-674, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29341615

RESUMO

Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ωp, the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ωp for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ωp is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the chemical potential due to the entropy increase resulting from the conversion of the plasmon's energy to heat. We conclude that even the act of registering the spectrum of nanoparticles is at times sufficient to alter their charge densities and hence their UV-visible spectra.

16.
Proc Natl Acad Sci U S A ; 114(34): 9056-9061, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784766

RESUMO

We present a sensitive and quantitative protein detection assay that can efficiently distinguish between specific and nonspecific target binding. Our technique combines dual affinity reagents with surface-enhanced Raman spectroscopy (SERS) and chemometric analysis. We link one Raman reporter-tagged affinity reagent to gold nanoparticles and another to a gold film, such that protein-binding events create a "hot spot" with strong SERS spectra from both Raman reporter molecules. Any signal generated in this context is indicative of recognition by both affinity labels, whereas signals generated by nonspecific binding lack one or the other label, enabling us to efficiently distinguish true from false positives. We show that the number of hot spots per unit area of our substrate offers a quantitative measure of analyte concentration and demonstrate that this dual-label, SERS-linked aptasensor assay can sensitively and selectively detect human α-thrombin in 1% human serum with a limit of detection of 86 pM.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Proteínas/análise , Análise Espectral Raman/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Ouro/metabolismo , Humanos , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Trombina/análise , Trombina/química , Trombina/metabolismo , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
17.
Chem Soc Rev ; 46(13): 3864-3865, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28640311
18.
Chem Soc Rev ; 46(13): 4042-4076, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28660954

RESUMO

Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.

19.
Annu Rev Phys Chem ; 68: 379-398, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28301756

RESUMO

Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes-processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

20.
Anal Chem ; 89(3): 1684-1688, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208284

RESUMO

Papaverine is a non-narcotic alkaloid found endemically and uniquely in the latex of the opium poppy. It is normally refined out of the opioids that the latex is typically collected for, hence its presence in a sample is strong prima facie evidence that the carrier from whom the sample was collected is implicated in the mass cultivation of poppies or the collection and handling of their latex. We describe an analysis technique combining surface-enhanced Raman spectroscopy (SERS) with microfluidics for detecting papaverine at low concentrations and show that its SERS spectrum has unique spectroscopic features that allows its detection at low concentrations among typical opioids. The analysis requires approximately 2.5 min from sample loading to results, which is compatible with field use. The weak acid properties of papaverine hydrochloride were investigated, and Raman bands belonging to the protonated and unprotonated forms of the isoquinoline ring of papaverine were identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...