Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(12): 4358-4363, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516090

RESUMO

Layered BC3, a metastable phase within the binary boron-carbon system that is composed of graphite-like sheets with hexagonally symmetric C6B6 units, has never been successfully crystallized. Instead, poorly-crystalline BC3-like materials with significant stacking disorder have been isolated, based on the co-pyrolysis of a boron trihalide precursor with benzene at around 800 °C. The halide leaving group (-X) is a significant driving force of these reactions, but the subsequent evolution of gaseous HX species at such high temperatures hampers their scaling up and also prohibits their further use in the presence of hard-casting templates such as ordered silicates. Herein, we report a novel halide-free synthesis route to turbostratic BC3 with long-range in-plane ordering, as evidenced by multi-wavelength Raman spectroscopy. Judicious pairing of the two molecular precursors is crucial to achieving B-C bond formation and preventing phase-segregation into the thermodynamically favored products. A simple computational method used herein to evaluate the compatibility of bottom-up molecular precursors can be generalized to guide the future synthesis of other metastable materials beyond the boron-carbon system.

2.
J Am Chem Soc ; 146(6): 3710-3720, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308759

RESUMO

1/2H and 13C hyperfine coupling constants to 5'-deoxyadenosyl (5'-dAdo•) radical trapped within the active site of the radical S-adenosyl-l-methionine (SAM) enzyme, pyruvate formate lyase-activating enzyme (PFL-AE), both in the absence of substrate and the presence of a reactive peptide-model of the PFL substrate, are completely characteristic of a classical organic free radical whose unpaired electron is localized in the 2pπ orbital of the sp2 C5'-carbon (J. Am. Chem. Soc. 2019, 141, 12139-12146). However, prior electron-nuclear double resonance (ENDOR) measurements had indicated that this 5'-dAdo• free radical is never truly "free": tight van der Waals contact with its target partners and active-site residues guide it in carrying out the exquisitely precise, regioselective reactions that are hallmarks of RS enzymes. Here, our understanding of how the active site chaperones 5'-dAdo• is extended through the finding that this apparently unexceptional organic free radical has an anomalous g-tensor and exhibits significant 57Fe, 13C, 15N, and 2H hyperfine couplings to the adjacent, isotopically labeled, methionine-bound [4Fe-4S]2+ cluster cogenerated with 5'-dAdo• during homolytic cleavage of cluster-bound SAM. The origin of the 57Fe couplings through nonbonded radical-cluster contact is illuminated by a formal exchange-coupling model and broken symmetry-density functional theory computations. Incorporation of ENDOR-derived distances from C5'(dAdo•) to labeled-methionine as structural constraints yields a model for active-site positioning of 5'-dAdo• with a short, nonbonded C5'-Fe distance (∼3 Å). This distance involves substantial motion of 5'-dAdo• toward the unique Fe of the [4Fe-4S]2+ cluster upon S-C(5') bond-cleavage, plausibly an initial step toward formation of the Fe-C5' bond of the organometallic complex, Ω, the central intermediate in catalysis by radical-SAM enzymes.


Assuntos
Proteínas Ferro-Enxofre , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Metionina , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Domínio Catalítico , Racemetionina , Radicais Livres/química , Proteínas Ferro-Enxofre/química
3.
J Am Chem Soc ; 145(25): 13879-13887, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307050

RESUMO

The radical S-adenosyl methionine (SAM) enzyme superfamily has widespread roles in hydrogen atom abstraction reactions of crucial biological importance. In these enzymes, reductive cleavage of SAM bound to a [4Fe-4S]1+ cluster generates the 5'-deoxyadenosyl radical (5'-dAdo•) which ultimately abstracts an H atom from the substrate. However, overwhelming experimental evidence has surprisingly revealed an obligatory organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond, whose properties are the target of this theoretical investigation. We report a readily applied, two-configuration version of broken symmetry DFT, denoted 2C-DFT, designed to allow the accurate description of the hyperfine coupling constants and g-tensors of an alkyl group bound to a multimetallic iron-sulfur cluster. This approach has been validated by the excellent agreement of its results both with those of multiconfigurational complete active space self-consistent field computations for a series of model complexes and with the results from electron nuclear double-resonance/electron paramagnetic resonance spectroscopic studies for the crystallographically characterized complex, M-CH3, a [4Fe-4S] cluster with a Fe-CH3 bond. The likewise excellent agreement between spectroscopic results and 2C-DFT computations for Ω confirm its identity as an organometallic complex with a bond between an Fe of the [4Fe-4S] cluster and C5' of the deoxyadenosyl moiety, as first proposed.

4.
Chemphyschem ; 24(5): e202300081, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855330

RESUMO

The front cover artwork is provided by the Mosquera group at Montana State University, Bozeman. The image shows theoretical elements involved in the density-functional calculations that are free of spurious fractional charges. Read the full text of the Research Article at 10.1002/cphc.202200592.

5.
J Am Chem Soc ; 145(3): 1855-1865, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642916

RESUMO

Cocrystal engineering, involving the assembly of two or more components into a highly ordered solid-state superstructure, has emerged as a popular strategy for tuning the photophysical properties of crystalline materials. The reversible co-assembly and disassembly of multicomponent cocrystals and their reciprocal transformation in the solid state remain challenging objectives. Herein, we report a color-tunable upconversion-emission switch based on the interconversion between two cocrystals. One red- and one yellow-emissive cocrystal, composed of an electron-deficient naphthalenediimide-based triangular macrocycle and different electron donors, have been obtained. The red- and yellow-emissive cocrystals undergo reversible transformations on exchanging the electron donors. Benefiting from intermolecular charge transfer interactions, the two cocrystals display superior two-photon excited upconversion emission. Accompanying the interconversion of the two cocrystals, their luminescent color changes between red and yellow, forming a dual-color upconversion-emission switch. This research provides a rare yet critical example involving precise control of cocrystal-to-cocrystal transformation and affords a reference for fabricating color-tunable nonlinear optical materials in the solid state.

6.
Chemphyschem ; 24(5): e202200592, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385578

RESUMO

Density functional theory (DFT) provides convenient electronic structure methods for the study of molecular systems and materials. Regular Kohn-Sham DFT calculations rely on unitary transformations to determine the ground-state electronic density, ground state energy, and related properties. However, for dissociation of molecular systems into open-shell fragments, due to the self-interaction error present in a large number of density functional approximations, the self-consistent procedure based on the this type of transformation gives rise to the well-known charge delocalization problem. To avoid this issue, we showed previously that the cluster operator of coupled-cluster theory can be utilized within the context of DFT to solve in an alternative and approximate fashion the ground-state self-consistent problem. This work further examines the application of the singles cluster operator to molecular ground state calculations. Two approximations are derived and explored: i) A linearized scheme of the quadratic equation used to determine the cluster amplitudes. ii) The effect of carrying the calculations in a non-self-consistent field fashion. These approaches are found to be capable of improving the energy and density of the system and are quite stable in either case. The theoretical framework discussed in this work could be used to describe, with an added flexibility, quantum systems that display challenging features and require expanded theoretical methods.

7.
Nano Lett ; 22(19): 7984-7991, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190418

RESUMO

Traditional ferroelectrics undergo thermally induced phase transitions whereby their structural symmetry increases. The associated higher-symmetry structure is dubbed paraelectric. Ferroelectric transition-metal dichalcogenide bilayers have been recently shown to become paraelectric, but not much has been said of the atomistic configuration of such a phase. As discovered through numerical calculations that include molecular dynamics here, their paraelectricity can only be ascribed to a time average of ferroelectric phases with opposing intrinsic polarizations, whose switching requires macroscopically large areas to slip in unison.


Assuntos
Elementos de Transição , Transição de Fase
8.
J Chem Phys ; 157(12): 124103, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182408

RESUMO

When plasmonic excitations of metallic interfaces and nanostructures interact with electronic excitations in semiconductors, new states emerge that hybridize the characteristics of the uncoupled states. The engendered properties make these hybrid states appealing for a broad range of applications, ranging from photovoltaic devices to integrated circuitry for quantum devices. Here, through quantum modeling, the coupling of surface plasmon polaritons and mobile two-dimensional excitons such as those in atomically thin semiconductors is examined with emphasis on the case of strong coupling. Our model shows that at around the energy crossing of the dispersion relationships of the uncoupled species, they strongly interact and polariton states-propagating plexcitons-emerge. The temporal evolution of the system where surface plasmon polaritons are continuously injected into the system is simulated to gain initial insight on potential experimental realizations of these states. The results show a steady state that is dominated by the lower-energy polariton. The study theoretically further establishes the possible existence of propagating plexcitons in atomically thin semiconductors and provides important guidance for the experimental detection and characterization of such states for a wide range of optoelectronic technologies.

9.
Phys Rev Lett ; 128(20): 206801, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657902

RESUMO

X-ray standing-wave (XSW) excited photoelectron emission was used to measure the site-specific valence band (VB) for ½ monolayer (ML) Pt grown on a SrTiO_{3} (001) surface. The XSW induced modulations in the core level (CL), and VB photoemission from the surface and substrate atoms were monitored for three hkl substrate Bragg reflections. The XSW CL analysis shows the Pt to have a face-centered-cubic-like cube-on-cube epitaxy with the substrate. The XSW VB information compares well to a density functional theory calculated projected density of states from the surface and substrate atoms. Overall, this Letter represents a novel method for determining the contribution to the density of states by valence electrons from specific atomic surface sites.

10.
Chem Commun (Camb) ; 58(49): 6902-6905, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35639424

RESUMO

Two-dimensional (2D) quantum materials are poised to transform conventional electronics for a wide spectrum of applications that will encompass chemical sciences. For the study of thermal transport in single-layer (1L) or multi-layer transition metal dichalcogenides (TMDs), this work explores the combination of density functional theory (DFT) and algorithmic training for the generation of a moment tensor potential (MTP) that models 1L-MoS2, 1L-WS2 and their alloys, and demonstrates a synergy of theoretical techniques that is anticipated to play an important role in the field. From a high-performance computing perspective, these yield very convenient inter-atomic (or inter-molecular in other contexts) potentials that are useful to predict the response of quantum materials to thermal perturbations, or other driving forces. We show that our trained MTP functions successfully describe vibrational properties of the systems, and their thermal conductivities. The trained potential displays consistent agreement with DFT calculations, as well as the Stillinger-Weber (SW) potential. We also find that the thermal conductivity of the 2D alloys is little affected by sulfur vacancies. This is a behavior that may aid the fine-tuning of material's thermal properties for heat management and energy storage and conversion applications.

11.
RSC Adv ; 12(5): 2684-2692, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425282

RESUMO

Sensors are routinely developed for specific applications, but multipurpose sensors are challenging, due to stability and poor functional design. We report organic materials that operate in solution and gas phase. They show a strong response behaviour to at least three types of environmental changes: pH, amine and metal ion binding/detection. We have confirmed and validated our findings using various analytical and computational methods. We found that the changes in polarity of the solvent and pH not only red shift the tail of the absorption spectra, but also extend the peak optical absorption of these structures by up to 100 nm, with consequential effects on the optical gap and colour changes of the materials. Acid-base response has been studied by spectrophotometric titrations with trifluoroacetic acid (TFA) and triethyl amine (TEA). The experiments show excellent reversibility with greater sensitivity to base than acid for all compounds. Analysis into metal sensing using Zn(ii) and Cu(ii) ions as analytes show that the materials can successfully bind the cations forming stable complexes. Moreover, a strong suppression of signal with copper gives an operative modality to detect the copper ion as low as 2.5 × 10-6 M. The formation of the metal complexes was also confirmed by growing crystals using a slow diffusion method; subsequent single crystal X-ray analysis reveals the ratio of ligand to metal to be 2 to 1. To test sensitivity towards various amine vapours, paper-based sensors have been fabricated. The sensors show a detection capability at 1 ppm of amine concentration. We have employed CIE L*a*b* colour space as the evaluation method, this provides numeric comparison of the samples from different series and allows comparison of small colour differences, which are generally undetectable by the human-eye. It shows that the CIE L*a*b* method can assess both sensitivity to a particular class of analytes and a specificity response to individual amines in this subclass offering an inexpensive and versatile methodology.

12.
J Am Chem Soc ; 144(11): 5087-5098, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258967

RESUMO

Radical S-adenosyl-l-methionine (SAM) enzymes employ a [4Fe-4S] cluster and SAM to initiate diverse radical reactions via either H-atom abstraction or substrate adenosylation. Here we use freeze-quench techniques together with electron paramagnetic resonance (EPR) spectroscopy to provide snapshots of the reaction pathway in an adenosylation reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme on a peptide substrate containing a dehydroalanine residue in place of the target glycine. The reaction proceeds via the initial formation of the organometallic intermediate Ω, as evidenced by the characteristic EPR signal with g∥ = 2.035 and g⊥ = 2.004 observed when the reaction is freeze-quenched at 500 ms. Thermal annealing of frozen Ω converts it into a second paramagnetic species centered at giso = 2.004; this second species was generated directly using freeze-quench at intermediate times (∼8 s) and unequivocally identified via isotopic labeling and EPR spectroscopy as the tertiary peptide radical resulting from adenosylation of the peptide substrate. An additional paramagnetic species observed in samples quenched at intermediate times was revealed through thermal annealing while frozen and spectral subtraction as the SAM-derived 5'-deoxyadenosyl radical (5'-dAdo•). The time course of the 5'-dAdo• and tertiary peptide radical EPR signals reveals that the former generates the latter. These results thus support a mechanism in which Ω liberates 5'-dAdo• by Fe-C5' bond homolysis, and the 5'-dAdo• attacks the dehydroalanine residue of the peptide substrate to form the adenosylated peptide radical species. The results thus provide a picture of a catalytically competent 5'-dAdo• intermediate trapped just prior to reaction with the substrate.


Assuntos
Metionina , S-Adenosilmetionina , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , S-Adenosilmetionina/metabolismo
13.
J Phys Chem A ; 125(39): 8751-8763, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582684

RESUMO

This work explores the application of the singles-based exponential ansatz to density functional calculations. In contrast to the standard approach where Kohn-Sham (KS) orbitals are determined prior to computing molecular quantities of interest, we consider the single-reference Hartree-Fock wave function as a starting point. Applying the exponential ansatz to this single reference gives an auxiliary wave function that is employed to calculate the electronic properties of the system. This wave function is determined self-consistently through the standard KS Hamiltonian but evaluated over the Hartree-Fock molecular orbital basis. By using spin-symmetry breaking, we recover size-consistent results free of unphysical fractional charges in the dissociation limit. Our method shows consistency with standard KS density functional calculations when the system geometry is similar to the equilibrium one or in repulsive configurations. For moderately long distances between atoms, not at dissociation, because of self-interaction the exponential ansatz may give instabilities in the form of large cluster amplitudes. To avoid these, this work introduces a relatively simple regularization method that preserves size-consistency and penalizes high amplitudes of the cluster operator, whereas the results remain physically meaningful. We also present the time-dependent extension of our theory and show that it can feature quantum states where multiple electrons are excited.

14.
J Phys Chem A ; 125(4): 1093-1102, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497573

RESUMO

We present a method based on second linear response time-dependent density functional theory (TDDFT) to calculate permanent and transition multipoles of excited states, which are required to compute excited-state absorption/emission spectra and multiphoton optical processes, among others. In previous work, we examined computations based on second linear response theory in which linear response TDDFT was employed twice. In contrast, the present methodology requires information from only a single linear response calculation to compute the excited-state properties. These are evaluated analytically through various algebraic operations involving electron repulsion integrals and excitation vectors. The present derivation focuses on full many-body wave functions instead of single orbitals, as in our previous approach. We test the proposed method by applying it to several diatomic and triatomic molecules. This shows that the computed excited-state dipoles are consistent with respect to reference equation-of-motion coupled-cluster calculations.

15.
J Am Chem Soc ; 142(47): 19969-19979, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180484

RESUMO

We report a series of azobenzene boronic acids that reversibly control the extent of diol binding via photochemical isomerization. When the boronic acid is ortho to the azo group, the thermodynamically favored E isomer binds weakly with diols to form boronic esters. The isomerization of the (E)-azobenzene to its Z isomer enhances diol binding, and the magnitude of this enhancement is affected by the azobenzene structure. 2,6-Dimethoxy azobenzene boronic acids show an over 20-fold enhancement in binding upon E → Z isomerization, which can be triggered with red light. Competition experiments and computational studies suggest that the changes in the binding affinity originate from the stabilization of the (E)-boronic acids and the destabilization of the (E)-boronic esters. We demonstrate a correlation between diol binding and the photostationary state, such that different wavelengths of irradiation yield different quantities of the bound diol. Higher binding constants for the Z isomer relative to the E isomer were observed with all diols investigated, including cyclic diols, nitrocatechol, biologically relevant compounds, and polyols. This photoswitch was employed to "catch and release" a fluorophore-tagged diol in buffered water. By tethering this photoswitch to a poly(ethylene glycol) star polymer, we can tune the stiffness of covalent adaptable hydrogels using different wavelengths of visible light. This paper describes how structural modifications of azobenzenes can influence the isomerism-dependent thermodynamics of their dynamic covalent bonds with small molecules and macromolecules.

16.
Chem Sci ; 11(27): 7133-7143, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33209244

RESUMO

Perylenediimide (PDI) derivatives have been widely studied as electron acceptor alternatives to fullerenes in organic photovoltaics (OPVs) because of their tunable absorption in the visible range, inexpensive synthesis, and photochemical stability. A common motif for improving device efficiency involves joining multiple PDIs together through electron-rich linkers to form a twisted acceptor-donor-acceptor molecule. Molecular features such as ring fusion are further employed to modify the structure locally and in films. These synthetic efforts have greatly enhanced OPV device efficiencies, however it remains unclear how the increasingly elaborate structural modifications affect the photophysical processes integral to efficient photon-to-charge conversion. Here we carry out a systematic study of a series of PDI dimers with thienoacene linkers in which the twist angle, linker length, and degree of ring fusion are varied to investigate the effects of these structural features on the molecular excited states and exciton recombination dynamics. Spectroscopic characterization of the dimers suggest that ring fusion causes greater coupling between the donor and acceptor components and greatly enhances the lifetime of a thienoacene to PDI charge transfer state. The lifetime of this CT state also correlates well with the linker-PDI dihedral angle, with smaller dihedral angle resulting in longer lifetime. DFT and two-photon absorption TDDFT calculations were developed in-house to model the ground state and excited transitions, providing theoretical insight into the reasons for the observed photophysical properties and identifying the charge transfer state in the excited state absorption spectra. These results highlight how the longevity of the excited state species, important for the efficient conversion of excitons to free carriers in OPV devices, can be chemically tuned by controlling ring fusion and by using steric effects to control the relative orientations of the molecular fragments. The results provide a successful rationalization of the behavior of solar cells involving these acceptor molecules.

17.
Nat Commun ; 11(1): 4633, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934231

RESUMO

Two-photon excited near-infrared fluorescence materials have garnered considerable attention because of their superior optical penetration, higher spatial resolution, and lower optical scattering compared with other optical materials. Herein, a convenient and efficient supramolecular approach is used to synthesize a two-photon excited near-infrared emissive co-crystalline material. A naphthalenediimide-based triangular macrocycle and coronene form selectively two co-crystals. The triangle-shaped co-crystal emits deep-red fluorescence, while the quadrangle-shaped co-crystal displays deep-red and near-infrared emission centered on 668 nm, which represents a 162 nm red-shift compared with its precursors. Benefiting from intermolecular charge transfer interactions, the two co-crystals possess higher calculated two-photon absorption cross-sections than those of their individual constituents. Their two-photon absorption bands reach into the NIR-II region of the electromagnetic spectrum. The quadrangle-shaped co-crystal constitutes a unique material that exhibits two-photon absorption and near-infrared emission simultaneously. This co-crystallization strategy holds considerable promise for the future design and synthesis of more advanced optical materials.

18.
J Am Chem Soc ; 142(36): 15488-15495, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32815721

RESUMO

Colloidal quantum dots (QDs) have shown promise over the last few decades for a range of applications including single photon emission, in vivo imaging, and photocatalysis. Recent experiments demonstrated that QDs impart stereoselectivity to triplet excited-state [2 + 2] cycloaddition reactions of alkenes photocatalyzed by the QD through self-assembly of the reagent molecules on the QD surface, but these experiments did not reveal the precise geometries of surface-bound molecules or their interactions with surface atoms. Here, a theoretical mechanistic approach is used to study such interactions for [2 + 2] cycloadditions of 4-vinylbenzoic acid derivatives on CdSe QDs. Spin-polarized periodic density functional theory (DFT) and nonperiodic DFT calculations are deployed to determine the origin of the selectivity for the syn diastereomer of the resultant tetrasubstituted cyclobutane product via atomistic modeling of the CdSe surface and substrates, determination of the thermodynamic energies of reactions for each step, the intermolecular interactions between the substrates, and the triplet state reaction paths. The calculations indicate that reaction selectivity arises from preferred binding of pairs through intermolecular interactions of substrate molecules on the QD surface in a syn-precursor structure followed by dimerization after triplet excitation. These mechanisms are generalizable to other metal-enriched QD surfaces that have a similar surface structure as that of CdSe, such as InSe or CdTe. Design principles for anti diastereomer derivatives are also discussed.

19.
ACS Nano ; 14(9): 11888-11896, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790326

RESUMO

Currently, a comprehensive understanding of the relationship between atomic structures and optical properties of ultrasmall metal nanoclusters with diameters between 1 and 3 nm is lacking. To address this challenge, it is necessary to develop tools for perturbing the atomic structure and modulating the optical properties of metal nanoclusters beyond what can be achieved using synthetic chemistry. Here, we present a systematic high-pressure study on a series of atomically precise ligand-protected metal nanoclusters. A diamond anvil cell is used as a high-pressure chamber to gradually compress the metal nanoclusters, while their optical properties are monitored in situ. Our experimental results show that the photoluminescence (PL) of these nanoclusters is enhanced by up to 2 orders of magnitude at pressures up to 7 GPa. The absorption onset red-shifts with increasing pressure up to ∼12 GPa. Density functional theory calculations reveal that the red-shift arises because of narrowing of the spacing between discrete energy levels of the cluster due to delocalization of the core electrons to the carbon ligands. The pressure-induced PL enhancement is ascribed to (i) the enhancement of the near-band-edge transition strength, (ii) suppression of the nonradiative vibrations, and (iii) hindrance of the excited-state structural distortions. Overall, our results demonstrate that high pressure is an effective tool for modulating the optical properties and improving the luminescence brightness of metal nanoclusters. The insights into structure-property relations obtained here also contribute to the rational design of metal nanoclusters for various optical applications.

20.
J Phys Chem A ; 124(28): 5954-5962, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32543853

RESUMO

We recently proposed domain separated density functional theory (DS-DFT), a framework that allows for the combination of different levels of theory for the computation of the electronic structure of molecules. This work discusses the application of DS-DFT to the computation of transition-state energy barriers and optical absorption spectra. We considered several hydrogen abstraction reactions and optical spectra of molecule/metal cluster systems, including the absorption of individual species such as carbon monoxide, methane, and molecular hydrogen to a Li6 cluster. We present and discuss two domain-separated methods: (i), the screened-density approximation (SDA) and (ii) linearly weighted exchange (LWE). We find that SDA, which is applied as a hybridization based on atomic domains, could be useful to computing energy barriers, whereas LWE is suited for the analysis of electronic properties such as ground-state gaps, excitation energies, and oscillator strengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...