Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Cardiovasc Imaging ; 15(7): 1274-1288, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35183477

RESUMO

BACKGROUND: Aortic atherosclerosis represents an important contributor to ischemic stroke risk. Identifying patients with high-risk aortic atheroma could improve preventative treatment strategies for future ischemic stroke. OBJECTIVES: The purpose of this study was to investigate whether thoracic 18F-sodium fluoride positron emission tomography (PET) could improve the identification of patients at the highest risk of ischemic stroke. METHODS: In a post hoc observational cohort study, we quantified thoracic aortic and coronary 18F-sodium fluoride activity in 461 patients with stable cardiovascular disease undergoing PET combined with computed tomography (CT). Progression of atherosclerosis was assessed by change in aortic and coronary CT calcium volume. Clinical outcomes were determined by the occurrence of ischemic stroke and myocardial infarction. We compared the prognostic utility of 18F-sodium fluoride activity for predicting stroke to clinical risk scores and CT calcium quantification using survival analysis and multivariable Cox regression. RESULTS: After 12.7 ± 2.7 months, progression of thoracic aortic calcium volume correlated with baseline thoracic aortic 18F-sodium fluoride activity (n = 140; r = 0.31; P = 0.00016). In 461 patients, 23 (5%) patients experienced an ischemic stroke and 32 (7%) a myocardial infarction after 6.1 ± 2.3 years of follow-up. High thoracic aortic 18F-sodium fluoride activity was strongly associated with ischemic stroke (HR: 10.3 [95% CI: 3.1-34.8]; P = 0.00017), but not myocardial infarction (P = 0.40). Conversely, high coronary 18F-sodium fluoride activity was associated with myocardial infarction (HR: 4.8 [95% CI: 1.9-12.2]; P = 0.00095) but not ischemic stroke (P = 0.39). In a multivariable Cox regression model including imaging and clinical risk factors, thoracic aortic 18F-sodium fluoride activity was the only variable associated with ischemic stroke (HR: 8.19 [95% CI: 2.33-28.7], P = 0.0010). CONCLUSIONS: In patients with established cardiovascular disease, thoracic aortic 18F-sodium fluoride activity is associated with the progression of atherosclerosis and future ischemic stroke. Arterial 18F-sodium fluoride activity identifies localized areas of atherosclerotic disease activity that are directly linked to disease progression and downstream regional clinical atherothrombotic events. (DIAMOND-Dual Antiplatelet Therapy to Reduce Myocardial Injury [DIAMOND], NCT02110303; Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis [SALTIRE II], NCT02132026; Novel Imaging Approaches To Identify Unstable Coronary Plaques, NCT01749254; and Role of Active Valvular Calcification and Inflammation in Patients With Aortic Stenosis, NCT01358513).


Assuntos
Estenose da Valva Aórtica , Aterosclerose , Doenças Cardiovasculares , Infarto do Miocárdio , Placa Aterosclerótica , Acidente Vascular Cerebral , Cálcio , Radioisótopos de Flúor , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos , Fluoreto de Sódio , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
2.
J Am Coll Cardiol ; 79(3): 223-233, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35057907

RESUMO

BACKGROUND: Lipoprotein(a) [Lp(a)] is associated with increased risk of myocardial infarction, although the mechanism for this observation remains uncertain. OBJECTIVES: This study aims to investigate whether Lp(a) is associated with adverse plaque progression. METHODS: Lp(a) was measured in patients with advanced stable coronary artery disease undergoing coronary computed tomography angiography at baseline and 12 months to assess progression of total, calcific, noncalcific, and low-attenuation plaque (necrotic core) in particular. High Lp(a) was defined as Lp(a) ≥ 70 mg/dL. The relationship of Lp(a) with plaque progression was assessed using linear regression analysis, adjusting for body mass index, segment involvement score, and ASSIGN score (a Scottish cardiovascular risk score comprised of age, sex, smoking, blood pressure, total and high-density lipoprotein [HDL]-cholesterol, diabetes, rheumatoid arthritis, and deprivation index). RESULTS: A total of 191 patients (65.9 ± 8.3 years of age; 152 [80%] male) were included in the analysis, with median Lp(a) values of 100 (range: 82 to 115) mg/dL and 10 (range: 5 to 24) mg/dL in the high and low Lp(a) groups, respectively. At baseline, there was no difference in coronary artery disease severity or plaque burden. Patients with high Lp(a) showed accelerated progression of low-attenuation plaque compared with low Lp(a) patients (26.2 ± 88.4 mm3 vs -0.7 ± 50.1 mm3; P = 0.020). Multivariable linear regression analysis confirmed the relation between Lp(a) and low-attenuation plaque volume progression (ß = 10.5% increase for each 50 mg/dL Lp(a), 95% CI: 0.7%-20.3%). There was no difference in total, calcific, and noncalcific plaque volume progression. CONCLUSIONS: Among patients with advanced stable coronary artery disease, Lp(a) is associated with accelerated progression of coronary low-attenuation plaque (necrotic core). This may explain the association between Lp(a) and the high residual risk of myocardial infarction, providing support for Lp(a) as a treatment target in atherosclerosis.


Assuntos
Progressão da Doença , Lipoproteína(a)/sangue , Placa Aterosclerótica/diagnóstico por imagem , Idoso , Biomarcadores/sangue , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Humanos , Masculino
3.
J Nucl Cardiol ; 29(3): 1372-1385, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33474695

RESUMO

BACKGROUND: Standard methods for quantifying positron emission tomography (PET) uptake in the aorta are time consuming and may not reflect overall vessel activity. We describe aortic microcalcification activity (AMA), a novel method for quantifying 18F-sodium fluoride (18F-NaF) uptake in the thoracic aorta. METHODS: Twenty patients underwent two hybrid 18F-NaF PET and computed tomography (CT) scans of the thoracic aorta less than three weeks apart. AMA, as well as maximum (TBRmax) and mean (TBRmean) tissue to background ratios, were calculated by two trained operators. Intra-observer repeatability, inter-observer repeatability and scan-rescan reproducibility were assessed. Each 18F-NaF quantification method was compared to validated cardiovascular risk scores. RESULTS: Aortic microcalcification activity demonstrated excellent intra-observer (intraclass correlation coefficient 0.98) and inter-observer (intraclass correlation coefficient 0.97) repeatability with very good scan-rescan reproducibility (intraclass correlation coefficient 0.86) which were similar to previously described TBRmean and TBRmax methods. AMA analysis was much quicker to perform than standard TBR assessment (3.4min versus 15.1min, P<0.0001). AMA was correlated with Framingham stroke risk scores and Framingham risk score for hard cononary heart disease. CONCLUSIONS: AMA is a simple, rapid and reproducible method of quantifying global 18F-NaF uptake across the ascending aorta and aortic arch that correlates with cardiovascular risk scores.


Assuntos
Calcinose , Radioisótopos de Flúor , Aorta Torácica/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Reprodutibilidade dos Testes , Fluoreto de Sódio
4.
JACC Cardiovasc Interv ; 14(16): 1743-1756, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34412792

RESUMO

Spontaneous coronary artery dissection (SCAD) is a pathophysiologically distinct cause of acute coronary syndromes (ACS). It is increasingly recognized that optimal management is different from that for atherosclerotic ACS and that a SCAD diagnosis has specific long-term prognostic and therapeutic implications. Accurate diagnosis is therefore essential to ensure the best treatment of patients. At present this relies on the recognition of typical features of SCAD identified on invasive coronary angiography. Although most SCAD can be readily distinguished angiographically from alternative causes of ACS, false positive and false negative diagnoses remain common. In particular, sometimes non-SCAD presentations, including atherothrombosis, takotsubo cardiomyopathy, coronary embolism, coronary vasospasm, contrast streaming, and myocardial infarction with nonobstructive coronary arteries, can mimic angiographic features usually associated with SCAD. The authors present the combined experience from European and US SCAD referral centers reviewing the classical angiographic appearances of SCAD, presenting potential diagnostic pitfalls and exemplars of SCAD mimickers. The authors further review the benefits and limitations of intracoronary imaging in the context of SCAD. Finally, the authors discuss the investigation of ambiguous cases and an approach to minimize misdiagnosis in difficult cases.


Assuntos
Anomalias dos Vasos Coronários , Doenças Vasculares , Angiografia Coronária , Anomalias dos Vasos Coronários/diagnóstico por imagem , Dissecação , Humanos , Resultado do Tratamento , Doenças Vasculares/diagnóstico por imagem , Doenças Vasculares/terapia
5.
Lancet ; 392(10151): 919-928, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170853

RESUMO

BACKGROUND: High-sensitivity cardiac troponin assays permit use of lower thresholds for the diagnosis of myocardial infarction, but whether this improves clinical outcomes is unknown. We aimed to determine whether the introduction of a high-sensitivity cardiac troponin I (hs-cTnI) assay with a sex-specific 99th centile diagnostic threshold would reduce subsequent myocardial infarction or cardiovascular death in patients with suspected acute coronary syndrome. METHODS: In this stepped-wedge, cluster-randomised controlled trial across ten secondary or tertiary care hospitals in Scotland, we evaluated the implementation of an hs-cTnI assay in consecutive patients who had been admitted to the hospitals' emergency departments with suspected acute coronary syndrome. Patients were eligible for inclusion if they presented with suspected acute coronary syndrome and had paired cardiac troponin measurements from the standard care and trial assays. During a validation phase of 6-12 months, results from the hs-cTnI assay were concealed from the attending clinician, and a contemporary cardiac troponin I (cTnI) assay was used to guide care. Hospitals were randomly allocated to early (n=5 hospitals) or late (n=5 hospitals) implementation, in which the high-sensitivity assay and sex-specific 99th centile diagnostic threshold was introduced immediately after the 6-month validation phase or was deferred for a further 6 months. Patients reclassified by the high-sensitivity assay were defined as those with an increased hs-cTnI concentration in whom cTnI concentrations were below the diagnostic threshold on the contemporary assay. The primary outcome was subsequent myocardial infarction or death from cardiovascular causes at 1 year after initial presentation. Outcomes were compared in patients reclassified by the high-sensitivity assay before and after its implementation by use of an adjusted generalised linear mixed model. This trial is registered with ClinicalTrials.gov, number NCT01852123. FINDINGS: Between June 10, 2013, and March 3, 2016, we enrolled 48 282 consecutive patients (61 [SD 17] years, 47% women) of whom 10 360 (21%) patients had cTnI concentrations greater than those of the 99th centile of the normal range of values, who were identified by the contemporary assay or the high-sensitivity assay. The high-sensitivity assay reclassified 1771 (17%) of 10 360 patients with myocardial injury or infarction who were not identified by the contemporary assay. In those reclassified, subsequent myocardial infarction or cardiovascular death within 1 year occurred in 105 (15%) of 720 patients in the validation phase and 131 (12%) of 1051 patients in the implementation phase (adjusted odds ratio for implementation vs validation phase 1·10, 95% CI 0·75 to 1·61; p=0·620). INTERPRETATION: Use of a high-sensitivity assay prompted reclassification of 1771 (17%) of 10 360 patients with myocardial injury or infarction, but was not associated with a lower subsequent incidence of myocardial infarction or cardiovascular death at 1 year. Our findings question whether the diagnostic threshold for myocardial infarction should be based on the 99th centile derived from a normal reference population. FUNDING: The British Heart Foundation.


Assuntos
Síndrome Coronariana Aguda/diagnóstico , Infarto do Miocárdio/diagnóstico , Troponina I/sangue , Síndrome Coronariana Aguda/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...