Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937107

RESUMO

γ-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain which mediates its rapid effects on neuronal excitability via ionotropic GABAA receptors. GABA levels in the brain are critically dependent upon GABA-aminotransferase (GABA-AT) which promotes its degradation. Vigabatrin, a low-affinity GABA-AT inhibitor, exhibits anticonvulsant efficacy, but its use is limited due to cumulative ocular toxicity. OV329 is a rationally designed, next-generation GABA-AT inhibitor with enhanced potency. We demonstrate that sustained exposure to OV329 in mice reduces GABA-AT activity and subsequently elevates GABA levels in the brain. Parallel increases in the efficacy of GABAergic inhibition were evident, together with elevations in electroencephalographic delta power. Consistent with this, OV329 exposure reduced the severity of status epilepticus and the development of benzodiazepine refractory seizures. Thus, OV329 may be of utility in treating seizure disorders and associated pathologies that result from neuronal hyperexcitability.


Assuntos
4-Aminobutirato Transaminase , Anticonvulsivantes , Benzodiazepinas , Convulsões , Ácido gama-Aminobutírico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/administração & dosagem , Masculino , Benzodiazepinas/farmacologia , 4-Aminobutirato Transaminase/antagonistas & inibidores , 4-Aminobutirato Transaminase/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Camundongos , Eletroencefalografia , Modelos Animais de Doenças , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Feminino
2.
Neuropharmacology ; 257: 110035, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876310

RESUMO

We previously showed that the PDE4 inhibitor apremilast reduces ethanol consumption in mice by protein kinase A (PKA) and GABAergic mechanisms. Preventing PKA phosphorylation of GABAA ß3 subunits partially blocked apremilast-mediated decreases in drinking. Here, we produced Gabrb1-S409A mice to render GABAA ß1 subunits resistant to PKA-mediated phosphorylation. Mass spectrometry confirmed the presence of the S409A mutation and lack of changes in ß1 subunit expression or phosphorylation at other residues. ß1-S409A male and female mice did not differ from wild-type C57BL/6J mice in expression of Gabrb1, Gabrb2, or Gabrb3 subunits or in behavioral characteristics. Apremilast prolonged recovery from ethanol ataxia to a greater extent in Gabrb1-S409A mice but prolonged recovery from zolpidem and propofol to a similar extent in both genotypes. Apremilast shortened recovery from diazepam ataxia in wild-type but prolonged recovery in Gabrb1-S409A mice. In wild-type mice, the PKA inhibitor H89 prevented apremilast modulation of ataxia by ethanol and diazepam, but not by zolpidem. In Gabrb1-S409A mice, inhibiting PKA or EPAC2 (exchange protein directly activated by cAMP) partially reversed apremilast potentiation of ethanol, diazepam, and zolpidem ataxia. Apremilast prevented acute tolerance to ethanol ataxia in both genotypes, but there were no genotype differences in ethanol consumption before or after apremilast. In contrast to results in Gabrb3-S408A/S409A mice, PKA phosphorylation of ß1-containing GABAA receptors is not required for apremilast's effects on acute tolerance or on ethanol consumption but is required for its ability to decrease diazepam intoxication. Besides PKA we identified EPAC2 as an additional cAMP-dependent mechanism by which apremilast regulates responses to GABAergic drugs.

3.
iScience ; 27(4): 109512, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38715938

RESUMO

LMTK3 is a brain-specific transmembrane serine/threonine protein kinase that acts as a scaffold for protein phosphatase-1 (PP1). Although LMKT3 has been identified as a risk factor for autism and epilepsy, its physiological significance is unknown. Here, we demonstrate that LMTK3 copurifies and binds to KCC2, a neuron-specific K+/Cl- transporter. KCC2 activity is essential for Cl--mediated hyperpolarizing GABAAR receptor currents, the unitary events that underpin fast synaptic inhibition. LMTK3 acts to promote the association of KCC2 with PP1 to promote the dephosphorylation of S940 within its C-terminal cytoplasmic domain, a process the diminishes KCC2 activity. Accordingly, acute inhibition of LMTK3 increases KCC2 activity dependent upon S940 and increases neuronal Cl- extrusion. Consistent with this, LMTK3 inhibition reduced intrinsic neuronal excitability and the severity of seizure-like events in vitro. Thus, LMTK3 may have profound effects on neuronal excitability as an endogenous modulator of KCC2 activity.

4.
Front Cardiovasc Med ; 11: 1386177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745756

RESUMO

The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-ß signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.

5.
Clin Nutr ; 43(5): 1079-1086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579370

RESUMO

BACKGROUND & AIMS: The low-FODMAP diet (LFD) has become almost synonymous with IBS care, yet the challenges associated with this rigorous therapeutic approach are often underacknowledged. Despite positive outcomes in RCTs, comparator groups frequently exhibit substantial response rates, raising questions about the definition of 'response'. Whilst the assessment of response in drug trials has evolved to utilize the more stringent FDA/EMA primary clinical endpoints, trials of the LFD have not yet followed. The aim of this article is to opine whether the current approach to the measurement of clinical response to the LFD in clinical trials should be reconsidered. METHODS: A comprehensive literature review of LFD clinical trials from the past decade was conducted, focusing on recorded response metrics for primary clinical endpoints. RESULTS: While response definitions vary, the 50-point IBS-SSS delta emerged as the predominant metric. Notably, no trials to date have adopted the more stringent primary clinical endpoints used in drug trials. Other response measures included binary response metrics (such as 'adequate clinical response'), changes in visual analogue scales or stool form/output, reductions in abdominal pain, as well as changes the magnitude of the IBS-SSS delta. Whether these metrics correspond to a clinically meaningful improvement for the patient is less clear, and as such aligning patient-clinician expectations can be challenging. CONCLUSIONS: A paradigm shift in the conceptualization of 'response' coupled with an emphasis on harder clinical endpoints in the context of clinical trials may serve to better justify the trade-off between symptom-improvement and the inherent challenges associated with this burdensome therapeutic approach.


Assuntos
Síndrome do Intestino Irritável , Síndrome do Intestino Irritável/dietoterapia , Humanos , Resultado do Tratamento , Dieta com Restrição de Carboidratos/métodos , Determinação de Ponto Final , Ensaios Clínicos Controlados Aleatórios como Assunto , Dieta FODMAP
6.
Artigo em Inglês | MEDLINE | ID: mdl-38391112

RESUMO

OBJECTIVES: To assess the impact on patient outcomes of the spondyloarthritis (SpA) and inflammatory bowel disease (IBD) multidisciplinary team (MDT) meetings in a large university hospital. METHODS: A single-centre retrospective observational case-note review was conducted assessing the outcome of all 226 cases discussed at the SpA-IBD MDT meetings in a large UK university hospital between 2017-2022. RESULTS: A total of 226 patients were discussed. It was deemed that 97% of MDT meetings helped to improve communication between teams, and 100% were educational. A total of 57% of discussions led to an instant change of disease management, while 40% of discussions resulted in a treatment plan that avoided the use of dual advanced therapy. This improved patient safety by reducing immunosuppression. The MDT meetings were highly cost and time efficient; 125 referrals between specialists were avoided, and in 51 cases there was a significant chance of reducing future drug costs. A timely investigation or appointment was arranged following 50% of MDT discussions, helping to clarify the diagnosis and optimise patient care. 9% of meetings enabled drugs to be prescribed to patients that are not yet licenced for the other speciality, thereby improving treatment options available in the management of complex cases. CONCLUSION: The MDT meetings have been beneficial for patients, the clinical team and the institution. This approach might be considered by other rheumatology and gastroenterology departments.

7.
Commun Biol ; 7(1): 57, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191649

RESUMO

The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.


Assuntos
Fibrose Cística , Lemur , Animais , Proteínas Quinases , Fosforilação , Transporte Axonal
8.
Vaccines (Basel) ; 11(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37897026

RESUMO

Vaccination against COVID-19 and influenza provides the best defense against morbidity and mortality. Administering both vaccines concurrently may increase vaccination rates and reduce the burden on the healthcare system. This study evaluated the immunogenicity of healthcare workers in Israel who were co-administered with the Omicron BA.4/BA.5 bivalent COVID-19 vaccine and the 2022-2023 quadrivalent influenza vaccine. SARS-CoV-2 neutralizing antibody titers were measured via microneutralization while influenza antibody titers were measured via hemagglutination inhibition. No immunogenic interference was observed by either vaccine when co-administered. Antibody titers against SARS-CoV-2 variants increased significantly in the cohort receiving the COVID-19 vaccine alone and in combination with the influenza vaccine. Antibody titers against the A/H1N1 influenza strain increased significantly in the cohort receiving the influenza vaccine alone and in combination with the COVID-19 vaccine. Antibody titers against B/Victoria increased significantly in the cohort that received both vaccines. This study has important public health implications for the 2023-2024 winter season, and supports co-administration of both vaccines as a viable immunization strategy.

9.
FEBS J ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622248

RESUMO

The accumulation of the small 42-residue long peptide amyloid-ß (Aß) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aß peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aß clearance are present in individuals living with AD. This accumulation of Aß can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aß-degrading enzymes (ADEs) are major players in the clearance of Aß. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aß peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aß which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.

10.
Antimicrob Agents Chemother ; 67(5): e0156322, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37093023

RESUMO

Clostridioides difficile infection (CDI) causes substantial morbidity and mortality worldwide with limited antibiotic treatment options. Ridinilazole is a precision bisbenzimidazole antibiotic being developed to treat CDI and reduce unacceptably high rates of infection recurrence in patients. Although in late clinical development, the precise mechanism of action by which ridinilazole elicits its bactericidal activity has remained elusive. Here, we present conclusive biochemical and structural data to demonstrate that ridinilazole has a primary DNA binding mechanism, with a co-complex structure confirming binding to the DNA minor groove. Additional RNA-seq data indicated early pleiotropic changes to transcription, with broad effects on multiple C. difficile compartments and significant effects on energy generation pathways particularly. DNA binding and genomic localization was confirmed through confocal microscopy utilizing the intrinsic fluorescence of ridinilazole upon DNA binding. As such, ridinilazole has the potential to be the first antibiotic approved with a DNA minor groove binding mechanism of action.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides difficile/genética , Piridinas/farmacologia , Infecções por Clostridium/tratamento farmacológico
11.
Cell Rep Med ; 4(3): 100957, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36889319

RESUMO

Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl- extrusion, a process that is facilitated by the neuronal specific K+/Cl- co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl- accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury.


Assuntos
Estado Epiléptico , Simportadores , Camundongos , Animais , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Convulsões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Simportadores/metabolismo
12.
Commun Biol ; 6(1): 11, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604600

RESUMO

Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, ß and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. ß2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while ß4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating ß2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition.


Assuntos
Receptores de GABA-A , Espectrina , Receptores de GABA-A/metabolismo , Espectrina/metabolismo , Sinapses/metabolismo , Proteínas de Membrana/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Front Mol Neurosci ; 15: 1017404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263376

RESUMO

Impaired inhibitory signaling underlies the pathophysiology of many neuropsychiatric and neurodevelopmental disorders including autism spectrum disorders and epilepsy. Neuronal inhibition is regulated by synaptic and extrasynaptic γ-aminobutyric acid type A receptors (GABA A Rs), which mediate phasic and tonic inhibition, respectively. These two GABA A R subtypes differ in their function, ligand sensitivity, and physiological properties. Importantly, they contain different α subunit isoforms: synaptic GABA A Rs contain the α1-3 subunits whereas extrasynaptic GABA A Rs contain the α4-6 subunits. While the subunit composition is critical for the distinct roles of synaptic and extrasynaptic GABA A R subtypes in inhibition, the molecular mechanism of the subtype-specific assembly has not been elucidated. To address this issue, we purified endogenous α1- and α4-containing GABA A Rs from adult murine forebrains and examined their subunit composition and interacting proteins using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quantitative analysis. We found that the α1 and α4 subunits form separate populations of GABA A Rs and interact with distinct sets of binding proteins. We also discovered that the ß3 subunit, which co-purifies with both the α1 and α4 subunits, has different levels of phosphorylation on serines 408 and 409 (S408/9) between the two receptor subtypes. To understand the role S408/9 plays in the assembly of α1- and α4-containing GABA A Rs, we examined the effects of S408/9A (alanine) knock-in mutation on the subunit composition of the two receptor subtypes using LC-MS/MS and quantitative analysis. We discovered that the S408/9A mutation results in the formation of novel α1α4-containing GABA A Rs. Moreover, in S408/9A mutants, the plasma membrane expression of the α4 subunit is increased whereas its retention in the endoplasmic reticulum is reduced. These findings suggest that S408/9 play a critical role in determining the subtype-specific assembly of GABA A Rs, and thus the efficacy of neuronal inhibition.

15.
Neuropharmacology ; 220: 109255, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152689

RESUMO

We previously showed that apremilast, an FDA-approved PDE4 inhibitor, selectively alters behavioral responses to ethanol and certain GABAergic drugs in a PKA-dependent manner in C57BL6/J mice. Here, we investigated if PKA phosphorylation of ß3 GABAA receptor subunits is involved in apremilast regulation of ethanol, propofol, or diazepam responses. Apremilast prolonged rotarod ataxia and loss of the righting reflex by ethanol and propofol in wild-type mice, but not in ß3-S408A/S409A knock-in mice. In contrast, apremilast hastened recovery from the ataxic and sedative effects of diazepam in both genotypes. These findings suggest that apremilast modulation of ethanol and propofol behaviors in wild-type mice is mediated by ß3 subunit phosphorylation, whereas its actions on diazepam responses involve a different mechanism. The PKA inhibitor H-89 prevented apremilast modulation of ethanol-induced ataxia. Apremilast sensitized wild-type males to ethanol-induced ataxia and decreased acute functional tolerance (AFT) in females but had no effect in ß3-S408A/S409A mice of either sex. These results could not be attributed to genotype differences in blood ethanol clearance. There were also no baseline genotype differences in ethanol consumption and preference in two different voluntary drinking procedures. However, the ability of apremilast to reduce ethanol consumption was diminished in ß3-S408A/S409A mice. Our results provide strong evidence that PKA-dependent phosphorylation of ß3 GABAA receptor subunits is an important mechanism by which apremilast increases acute sensitivity to alcohol, decreases AFT, and decreases ethanol drinking.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Inibidores da Fosfodiesterase 4 , Propofol , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Ataxia , Diazepam , Etanol/farmacologia , Feminino , Hipnóticos e Sedativos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Fosfodiesterase 4/farmacologia , Fosforilação , Receptores de GABA-A/metabolismo , Talidomida/análogos & derivados , Ácido gama-Aminobutírico
16.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 725-734, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647920

RESUMO

The formation of new dysfunctional blood vessels is a crucial stage in the development of various conditions such as macular degeneration, diabetes, cardiovascular disease, neurological disease and inflammatory disorders, as well as during tumor growth, eventually contributing to metastasis. An important factor involved in pathogenic angiogenesis is leucine-rich α-2-glycoprotein 1 (LRG1), the antibody blockade of which has been shown to lead to a reduction in both choroidal neovascularization and tumor growth in mouse models. In this work, the structural interactions between the LRG1 epitope and the Fab fragment of Magacizumab, a humanized function-blocking IgG4 against LRG1, are analysed, determining its specific binding mode and the key residues involved in LRG1 recognition. Based on these structural findings, a series of mutations are suggested that could be introduced into Magacizumab to increase its affinity for LRG1, as well as a model of the entire Fab-LRG1 complex that could enlighten new strategies to enhance affinity, consequently leading towards an even more efficient therapeutic.


Assuntos
Anticorpos Monoclonais Humanizados , Glicoproteínas , Neovascularização Patológica , Animais , Glicoproteínas/metabolismo , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
17.
Front Mol Neurosci ; 15: 817996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431797

RESUMO

Neuroactive steroids (NASs) have potent anxiolytic, anticonvulsant, sedative, and hypnotic actions, that reflect in part their efficacy as GABA A R positive allosteric modulators (PAM). In addition to this, NAS exert metabotropic effects on GABAergic inhibition via the activation of membrane progesterone receptors (mPRs), which are G-protein coupled receptors. mPR activation enhances the phosphorylation of residues serine 408 and 409 (S408/9) in the ß3 subunit of GABA A Rs, increasing their accumulation in the plasma membrane leading to a sustained increase in tonic inhibition. To explore the significance of NAS-induced phosphorylation of GABA A Rs, we used mice in which S408/9 in the ß3 subunit have been mutated to alanines, mutations that prevent the metabotropic actions of NASs on GABA A R function while preserving NAS allosteric potentiation of GABAergic current. While the sedative actions of NAS were comparable to WT, their anxiolytic actions were reduced in S408/9A mice. Although the induction of hypnosis by NAS were maintained in the mutant mice the duration of the loss of righting reflex was significantly shortened. Finally, ability of NAS to terminate diazepam pharmacoresistant seizures was abolished in S408/9A mice. In conclusion, our results suggest that S408/9 in the GABA A R ß3 subunit contribute to the anxiolytic and anticonvulsant efficacy of NAS, in addition to their ability to regulate the loss of righting reflex.

18.
J Biol Chem ; 298(5): 101933, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427648

RESUMO

Hyperammonemia is known to cause various neurological dysfunctions such as seizures and cognitive impairment. Several studies have suggested that hyperammonemia may also be linked to the development of Alzheimer's disease (AD). However, the direct evidence for a role of ammonia in the pathophysiology of AD remains to be discovered. Herein, we report that hyperammonemia increases the amount of mature amyloid precursor protein (mAPP) in astrocytes, the largest and most prevalent type of glial cells in the central nervous system that are capable of metabolizing glutamate and ammonia, and promotes amyloid beta (Aß) production. We demonstrate the accumulation of mAPP in astrocytes was primarily due to enhanced endocytosis of mAPP from the plasma membrane. A large proportion of internalized mAPP was targeted not to the lysosome, but to the endoplasmic reticulum, where processing enzymes ß-secretase BACE1 (beta-site APP cleaving enzyme 1) and γ-secretase presenilin-1 are expressed, and mAPP is cleaved to produce Aß. Finally, we show the ammonia-induced production of Aß in astrocytic endoplasmic reticulum was specific to Aß42, a principal component of senile plaques in AD patients. Our studies uncover a novel mechanism of Aß42 production in astrocytes and also provide the first evidence that ammonia induces the pathogenesis of AD by regulating astrocyte function.


Assuntos
Doença de Alzheimer , Amônia , Peptídeos beta-Amiloides , Astrócitos , Hiperamonemia , Doença de Alzheimer/fisiopatologia , Amônia/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/patologia , Retículo Endoplasmático/metabolismo , Humanos , Hiperamonemia/metabolismo
20.
Sci Rep ; 12(1): 4867, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318338

RESUMO

Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1-/- explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility.


Assuntos
Glicoproteínas , Interleucina-6 , Neovascularização Patológica , Fator de Transcrição STAT3 , COVID-19 , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Humanos , Interleucina-6/metabolismo , Neovascularização Patológica/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...