Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 95(4): 931-940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38066248

RESUMO

BACKGROUND: Lung inflammation and impaired alveolarization precede bronchopulmonary dysplasia (BPD). Glucocorticoids are anti-inflammatory and reduce ventilator requirements in preterm infants. However, high-dose glucocorticoids inhibit alveolarization. The effect of glucocorticoids on lung function and structure in preterm newborns exposed to antenatal inflammation is unknown. We hypothesise that postnatal low-dose dexamethasone reduces ventilator requirements, prevents inflammation and BPD-like lung pathology, following antenatal inflammation. METHODS: Pregnant ewes received intra-amniotic LPS (E.coli, 4 mg/mL) or saline at 126 days gestation; preterm lambs were delivered 48 h later. Lambs were randomised to receive either tapered intravenous dexamethasone (LPS/Dex, n = 9) or saline (LPS/Sal, n = 10; Sal/Sal, n = 9) commencing <3 h after birth. Respiratory support was gradually de-escalated, using a standardised protocol aimed at weaning from ventilation towards unassisted respiration. Tissues were collected at day 7. RESULTS: Lung morphology and mRNA levels for inflammatory mediators were measured. Respiratory support requirements were not different between groups. Histological analyses revealed higher tissue content and unchanged alveolarization in LPS/Sal compared to other groups. LPS/Dex lambs exhibited decreased markers of pulmonary inflammation compared to LPS/Sal. CONCLUSION: Tapered low-dose dexamethasone reduces the impact of antenatal LPS on ventilation requirements throughout the first week of life and reduces inflammation and pathological thickening of the preterm lung IMPACT: We are the first to investigate the combination of antenatal inflammation and postnatal dexamethasone therapy in a pragmatic study design, akin to contemporary neonatal care. We show that antenatal inflammation with postnatal dexamethasone therapy does not reduce ventilator requirements, but has beneficial maturational impacts on the lungs of preterm lambs at 7 days of life. Appropriate tapered postnatal dexamethasone dosing should be explored for extuabtion of oxygen-dependant neonates.


Assuntos
Displasia Broncopulmonar , Lipopolissacarídeos , Humanos , Recém-Nascido , Lactente , Animais , Ovinos , Feminino , Gravidez , Recém-Nascido Prematuro , Anti-Inflamatórios/farmacologia , Glucocorticoides/farmacologia , Pulmão , Inflamação , Displasia Broncopulmonar/prevenção & controle , Esteroides , Carneiro Doméstico , Dexametasona/farmacologia
2.
J Neuroinflammation ; 18(1): 189, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465372

RESUMO

BACKGROUND: Increased systemic and tissue levels of interleukin (IL)-1ß are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). METHODS: Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. RESULTS: LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1ß immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1ß expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. CONCLUSION: IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalite/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Lipopolissacarídeos/farmacologia , Oligodendroglia/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalite/metabolismo , Encefalite/patologia , Feminino , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Gravidez , Ovinos , Substância Branca/metabolismo , Substância Branca/patologia
3.
Placenta ; 104: 232-235, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450642

RESUMO

Maternal asthma is known to impact intrauterine growth outcomes, which may be mediated, in part, by altered androgen signalling. Our aim was to explore whether the sheep placenta expresses androgen receptor (AR) isoforms and determine if the differential expression of AR protein isoforms is altered by maternal asthma. Four known AR isoforms were detected (AR-FL, AR-v1, AR-v7, and AR-45), and their expression and subcellular distribution was altered in the presence of maternal allergic asthma. These findings underscore the importance for in vivo models of maternal asthma to delineate molecular patterns that may contribute to feto-placental growth and development.


Assuntos
Asma/metabolismo , Placenta/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/metabolismo , Animais , Asma/genética , Modelos Animais de Doenças , Feminino , Gravidez , Isoformas de Proteínas/genética , Receptores Androgênicos/genética , Ovinos
4.
Placenta ; 83: 33-36, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31477204

RESUMO

Maternal asthma increases the risk of adverse pregnancy outcomes and may affect fetal growth and placental function by differential effects on the expression of glucocorticoid receptor (GR) isoforms, leading to altered glucocorticoid signalling. Our aim was to examine the effect of maternal asthma on placental GR profiles using a pregnant sheep model of asthma. Nine known GR isoforms were detected. There was a significant increase in the expression of placental GR isoforms that are known to have low trans-activational activity in other species including GR A, GR P and GRγ which may result in a pro-inflammatory environment in the presence of allergic asthma.


Assuntos
Asma/complicações , Asma/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Animais Recém-Nascidos , Asma/patologia , Modelos Animais de Doenças , Feminino , Placenta/patologia , Gravidez , Complicações na Gravidez/patologia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/classificação , Carneiro Doméstico
5.
J Physiol ; 597(16): 4251-4262, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31192454

RESUMO

KEY POINTS: Experimental maternal allergic asthma in sheep provides an experimental model in which to test impacts on progeny. Fetuses from allergic asthmatic ewes had fewer surfactant-producing cells in lungs. A greater proportion of lymphocytes from thymus were CD44 positive in fetuses from allergic asthmatic ewes than in controls. These changes to fetal development might contribute to poor neonatal lung function and increased risk of allergy seen in offspring of pregnancies complicated by asthma. ABSTRACT: Asthma is prevalent in pregnancy and increases the risk of disease in offspring, including neonatal respiratory distress and childhood asthma and allergy, but the mechanisms are not understood. We hypothesized that fetal lung structure and immune phenotype in late gestation fetal sheep would be impaired in our sheep model of maternal allergic asthma during pregnancy. Singleton-bearing ewes were either sensitized before pregnancy to house dust mite (HDM, allergic, n = 7) or were non-allergic (control, n = 5). The ewes were subsequently subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Tissues were collected at 140 ± 1 days gestational age (term, ∼147 days). The density of type II alveolar epithelial cells (surfactant protein C-immunostained) in the lungs was 30% lower in fetuses from allergic ewes than in controls (P < 0.001), but tissue-to-air space ratio and numbers of leucocytes and macrophages were not different between groups. The proportion of CD44+ lymphocytes in the fetal thymus was 3.5-fold higher in fetuses from allergic ewes than in control ewes (P = 0.043). Fewer surfactant-producing type II alveolar epithelial cells may contribute to the increased risk of neonatal respiratory distress in infants of asthmatic mothers, suggesting that interventions to promote lung maturation could improve their neonatal outcomes. If the elevated lymphocyte expression of CD44 persists postnatally, this would confer greater susceptibility to allergic diseases in progeny of asthmatic mothers, consistent with observations in humans. Further experiments are needed to evaluate postnatal phenotypes of progeny and investigate potential interventions.


Assuntos
Asma , Desenvolvimento Fetal/imunologia , Hipersensibilidade , Pulmão/embriologia , Pulmão/imunologia , Ovinos/imunologia , Líquido Amniótico/química , Animais , Anticorpos/sangue , Testes de Provocação Brônquica/métodos , Citocinas/química , Citocinas/metabolismo , Feminino , Hidrocortisona/sangue , Gravidez
6.
Dev Neurosci ; 40(3): 258-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30179864

RESUMO

BACKGROUND: Infants born preterm following exposure to in utero inflammation/chorioamnionitis are at high risk of brain injury and life-long neurological deficits. In this study, we assessed the efficacy of early intervention umbilical cord blood (UCB) cell therapy in a large animal model of preterm brain inflammation and injury. We hypothesised that UCB treatment would be neuroprotective for the preterm brain following subclinical fetal inflammation. METHODS: Chronically instrumented fetal sheep at 0.65 gestation were administered lipopolysaccharide (LPS, 150 ng, 055:B5) intravenously over 3 consecutive days, followed by 100 million human UCB mononuclear cells 6 h after the final LPS dose. Controls were administered saline instead of LPS and cells. Ten days after the first LPS dose, the fetal brain and cerebrospinal fluid were collected for analysis of subcortical and periventricular white matter injury and inflammation. RESULTS: LPS administration increased microglial aggregate size, neutrophil recruitment, astrogliosis and cell death compared with controls. LPS also reduced total oligodendrocyte count and decreased mature myelinating oligodendrocytes. UCB cell therapy attenuated cell death and inflammation, and recovered total and mature oligodendrocytes, compared with LPS. CONCLUSIONS: UCB cell treatment following inflammation reduces preterm white matter brain injury, likely mediated via anti-inflammatory actions.


Assuntos
Lesões Encefálicas/terapia , Encefalite/terapia , Sangue Fetal/citologia , Lipopolissacarídeos/farmacologia , Animais , Corioamnionite/terapia , Modelos Animais de Doenças , Feminino , Feto/citologia , Humanos , Microglia/citologia , Gravidez , Ovinos , Substância Branca/efeitos dos fármacos
7.
Paediatr Respir Rev ; 23: 72-77, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27856214

RESUMO

Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS.


Assuntos
Corioamnionite/metabolismo , Pulmão , Pneumonia , Síndrome do Desconforto Respiratório do Recém-Nascido , Animais , Descoberta de Drogas , Feminino , Idade Gestacional , Glucocorticoides/metabolismo , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumonia/complicações , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Prostaglandinas/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Síndrome do Desconforto Respiratório do Recém-Nascido/prevenção & controle
8.
Neonatology ; 110(2): 155-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27105430

RESUMO

Mechanical ventilation is a risk factor for cerebral inflammation and brain injury in preterm neonates. The risk increases proportionally with the intensity of treatment. Recent studies have shown that cerebral inflammation and injury can be initiated in the delivery room. At present, initiation of intermittent positive pressure ventilation (IPPV) in the delivery room is one of the least controlled interventions a preterm infant will likely face. Varying pressures and volumes administered shortly after birth are sufficient to trigger pathways of ventilation-induced lung and brain injury. The pathways involved in ventilation-induced brain injury include a complex inflammatory cascade and haemodynamic instability, both of which have an impact on the brain. However, regardless of the strategy employed to deliver IPPV, any ventilation has the potential to have an impact on the immature brain. This is particularly important given that preterm infants are already at a high risk for brain injury simply due to immaturity. This highlights the importance of improving the initial respiratory support in the delivery room. We review the mechanisms of ventilation-induced brain injury and discuss the need for, and the most likely, current therapeutic agents to protect the preterm brain. These include therapies already employed clinically, such as maternal glucocorticoid therapy and allopurinol, as well as other agents, such as erythropoietin, human amnion epithelial cells and melatonin, already showing promise in preclinical studies. Their mechanisms of action are discussed, highlighting their potential for use immediately after birth.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Ventilação com Pressão Positiva Intermitente/efeitos adversos , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Salas de Parto , Eritropoetina/uso terapêutico , Feminino , Glucocorticoides/uso terapêutico , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Melatonina/uso terapêutico , Gravidez , Cuidado Pré-Natal , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
J Physiol ; 594(5): 1437-49, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26332509

RESUMO

Inadvertently injurious ventilation of preterm neonates in the delivery room can cause cerebral white matter (WM) inflammation and injury. We investigated the impact of an early high dose of recombinant human erythropoietin (EPO) on ventilation-induced WM changes in preterm lambs. Injurious ventilation, targeting a V(T) of 15 ml kg(-1) with no positive end-expiratory pressure, was initiated for 15 min in preterm lambs (0.85 gestation). Conventional ventilation was continued for a further 105 min. Lambs received either 5000 IU kg(-1) of EPO (EPREX®; Vent+EPO; n = 6) or vehicle (Vent; n = 8) via an umbilical vein at 4 ± 2 min. Markers of WM injury and inflammation were assessed using quantitative real-time PCR (qPCR) and immunohistochemistry and compared to a group of unventilated controls (UVC; n = 4). In Vent+EPO lambs compared to Vent lambs: (i) interleukin (IL)-1ß and IL-6 mRNA levels in the periventricular WM and IL-8 mRNA levels in the subcortical WM were higher (P < 0.05 for all); (ii) the density of microglia within the aggregations was not different in the periventricular WM and was lower in the subcortical WM (P = 0.001); (iii) the density of astrocytes was lower in the subcortical WM (P = 0.002); (iv) occludin and claudin-1 mRNA levels were higher in the periventricular WM (P < 0.02 for all) and (vi) the number of blood vessels with protein extravasation was lower (P < 0.05). Recombinant human EPO had variable regional effects within the WM when administered during injurious ventilation. The adverse short-term outcomes discourage the use of early high dose EPO administration in preterm ventilated babies.


Assuntos
Eritropoetina/uso terapêutico , Hipóxia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Respiração Artificial/efeitos adversos , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Eritropoetina/administração & dosagem , Eritropoetina/farmacologia , Feminino , Hipóxia Encefálica/etiologia , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Gravidez , Ventilação Pulmonar , Ovinos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
10.
J Physiol ; 594(5): 1311-25, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26235954

RESUMO

Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.


Assuntos
Asma/fisiopatologia , Modelos Animais de Doenças , Complicações na Gravidez/fisiopatologia , Animais , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/toxicidade , Asma/etiologia , Feminino , Gravidez , Complicações na Gravidez/etiologia , Ovinos
11.
Front Pediatr ; 3: 97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618148

RESUMO

The initiation of ventilation in the delivery room is one of the most important but least controlled interventions a preterm infant will face. Tidal volumes (V T) used in the neonatal intensive care unit are carefully measured and adjusted. However, the V Ts that an infant receives during resuscitation are usually unmonitored and highly variable. Inappropriate V Ts delivered to preterm infants during respiratory support substantially increase the risk of injury and inflammation to the lungs and brain. These may cause cerebral blood flow instability and initiate a cerebral inflammatory cascade. The two pathways increase the risk of brain injury and potential life-long adverse neurodevelopmental outcomes. The employment of new technologies, including respiratory function monitors, can improve and guide the optimal delivery of V Ts and reduce confounders, such as leak. Better respiratory support in the delivery room has the potential to improve both respiratory and neurological outcomes in this vulnerable population.

12.
Dev Neurosci ; 37(4-5): 338-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720586

RESUMO

BACKGROUND: Preterm infants can be inadvertently exposed to high tidal volumes (VT) during resuscitation in the delivery room due to limitations of available equipment. High VT ventilation of preterm lambs produces cerebral white matter (WM) pathology similar to that observed in preterm infants who develop cerebral palsy. We hypothesized that human amnion epithelial cells (hAECs), which have anti-inflammatory and regenerative properties, would reduce ventilation-induced WM pathology in neonatal late preterm lamb brains. METHODS: Two groups of lambs (0.85 gestation) were used, as follows: (1) ventilated lambs (Vent; n = 8) were ventilated using a protocol that induces injury (VT targeting 15 ml/kg for 15 min, with no positive end-expiratory pressure) and were then maintained for another 105 min, and (2) ventilated + hAECs lambs (Vent+hAECs; n = 7) were similarly ventilated but received intravenous and intratracheal administration of 9 × 10(7) hAECs (18 × 10(7) hAECs total) at birth. Oxygenation and ventilation parameters were monitored in real time; cerebral oxygenation was measured using near-infrared spectroscopy. qPCR (quantitative real-time PCR) and immunohistochemistry were used to assess inflammation, vascular leakage and astrogliosis in both the periventricular and subcortical WM of the frontal and parietal lobes. An unventilated control group (UVC; n = 5) was also used for qPCR analysis of gene expression. Two-way repeated measures ANOVA was used to compare physiological data. Student's t test and one-way ANOVA were used for immunohistological and qPCR data comparisons, respectively. RESULTS: Respiratory parameters were not different between groups. Interleukin (IL)-6 mRNA levels in subcortical WM were lower in the Vent+hAECs group than the Vent group (p = 0.028). IL-1ß and IL-6 mRNA levels in periventricular WM were higher in the Vent+hAECs group than the Vent group (p = 0.007 and p = 0.001, respectively). The density of Iba-1-positive microglia was lower in the subcortical WM of the parietal lobes (p = 0.010) in the Vent+hAECs group but not in the periventricular WM. The number of vessels in the WM of the parietal lobe exhibiting protein extravasation was lower (p = 0.046) in the Vent+hAECs group. Claudin-1 mRNA levels were higher in the periventricular WM (p = 0.005). The density of GFAP-positive astrocytes was not different between groups. CONCLUSIONS: Administration of hAECs at the time of birth alters the effects of injurious ventilation on the preterm neonatal brain. Further studies are required to understand the regional differences in the effects of hAECs on ventilation-induced WM pathology and their net effect on the developing brain.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Leucoencefalopatias/prevenção & controle , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Leucoencefalopatias/etiologia , Leucoencefalopatias/imunologia , Leucoencefalopatias/metabolismo , Gravidez , Nascimento Prematuro , Ovinos
13.
PLoS One ; 9(11): e112264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393411

RESUMO

BACKGROUND: A cornerstone of neonatal resuscitation teaching suggests that a rapid vagal-mediated bradycardia is one of the first signs of perinatal compromise. As this understanding is based primarily on fetal studies, we investigated whether the heart rate and blood pressure response to total asphyxia is influenced by whether the animal is in utero or ex utero. METHODS: Fetal sheep were instrumented at ∼ 139 days of gestation and then asphyxiated by umbilical cord occlusion until mean arterial blood pressure decreased to ∼ 20 mmHg. Lambs were either completely submerged in amniotic fluid (in utero; n = 8) throughout the asphyxia or were delivered and then remained ex utero (ex utero; n = 8) throughout the asphyxia. Heart rate and arterial blood pressure were continuously recorded. RESULTS: Heart rate was higher in ex utero lambs than in utero lambs. Heart rates in in utero lambs rapidly decreased, while heart rates in ex utero lambs initially increased following cord occlusion (for ∼ 1.5 min) before they started to decrease. Mean arterial pressure initially increased then decreased in both groups. CONCLUSIONS: Heart rate response to asphyxia was markedly different depending upon whether the lamb was in utero or ex utero. This indicates that the cardiovascular responses to perinatal asphyxia are significantly influenced by the newborn's local environment. As such, based solely on heart rate, the stage and severity of a perinatal asphyxic event may not be as accurate as previously assumed.


Assuntos
Asfixia Neonatal/fisiopatologia , Asfixia/fisiopatologia , Pressão Sanguínea/fisiologia , Feto/fisiopatologia , Frequência Cardíaca/fisiologia , Animais , Carneiro Doméstico/fisiologia , Nascimento a Termo
14.
PLoS One ; 9(11): e112402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25379714

RESUMO

BACKGROUND: The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. METHODS: Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. RESULTS: LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. CONCLUSIONS: Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.


Assuntos
Lesões Encefálicas/fisiopatologia , Corioamnionite/fisiopatologia , Lesão Pulmonar/fisiopatologia , Nascimento Prematuro/fisiopatologia , Respiração Artificial/métodos , Doenças dos Ovinos/fisiopatologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/veterinária , Corioamnionite/veterinária , Feminino , Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Hemodinâmica/fisiologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-8/genética , Lesão Pulmonar/veterinária , Gravidez , Nascimento Prematuro/veterinária , Respiração Artificial/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos
15.
Stem Cell Res Ther ; 5(5): 107, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189170

RESUMO

INTRODUCTION: Preterm newborns often require mechanical respiratory support that can result in ventilation-induced lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after combination with surfactant. METHODS: hAECs were incubated in surfactant (Curosurf) or phosphate-buffered saline (PBS) for 30 minutes at 37°C. Cell viability, phenotype (by flow cytometry), inhibition of T-cell proliferative responses and differentiation into lung epithelium-like cells (assessed with immunohistochemical staining of surfactant protein (SP)-A) were investigated. RESULTS: Cell viability and apoptosis of hAECs were not altered by surfactant, and hAEC phenotype was not altered. hAECs maintained expression of epithelial cell adhesion molecule (EpCAM) and human leukocyte antigen (HLA)-ABC after surfactant exposure. Expression of HLA-DR, CD80 and CD86 was not increased. Immunosuppression of T cells by hAECs was not altered by surfactant. hAEC differentiation into lung epithelium-like cells was equivalent after exposure to PBS or surfactant, and SP-A expression was equivalent. CONCLUSION: Surfactant exposure does not alter viability or function of hAECs. Thus a combination therapy of hAECs and surfactant may be an efficacious therapy to ameliorate or prevent preterm lung disease.


Assuntos
Âmnio/citologia , Surfactantes Pulmonares/farmacologia , Âmnio/efeitos dos fármacos , Âmnio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfolipídeos/farmacologia , Gravidez , Surfactantes Pulmonares/metabolismo
16.
Clin Sci (Lond) ; 127(9): 559-69, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24815024

RESUMO

Intrauterine inflammation is a major contributor to preterm birth and has adverse effects on preterm neonatal cardiovascular physiology. Cardiomyocyte maturation occurs in late gestation in species such as humans and sheep. We tested the hypothesis that intrauterine inflammation has deleterious effects on cardiac function in preterm sheep which might be explained by altered cardiomyocyte proliferation and maturation. Pregnant ewes received an ultrasound-guided intra-amniotic injection of lipopolysaccharide (LPS) or saline 7 days prior to delivery at day 127 of pregnancy (term 147 days). Cardiac contractility was recorded in spontaneously beating hearts of the offspring, perfused in a Langendorff apparatus. Saline-filled latex balloons were inserted into the left ventricle (LV) and right ventricle (RV). Responsiveness to isoprenaline and stop-flow/reperfusion was assessed. In other experiments, hearts were perfusion-fixed, and cardiomyocyte nuclearity, volume and number were determined. ß-Adrenoceptor mRNA levels were determined in unfixed tissue. In hearts of LPS-exposed fetuses, contractility in the LV and RV was suppressed by ~40% and cardiomyocyte numbers were reduced by ~25%. Immature mono-nucleated cardiomyocytes had lower volumes (~18%), whereas mature bi-nucleated cardiomyocyte volume was ~77% greater. Although basal coronary flow was significantly increased by 21±7% in LPS-exposed hearts, following ischaemia/reperfusion (IR), end-diastolic pressure was increased 2.4±0.3-fold and infarct area was increased 3.2±0.6-fold compared with those in controls. Maximum responsiveness to isoprenaline was enhanced by LPS, without an increase in ß-adrenoceptor mRNA, suggesting altered second messenger signalling. Intrauterine inflammation altered cardiac growth, suppressed contractile function and enhanced responsiveness to stress. Although these effects may ensure immediate survival, they probably contribute to the increased vulnerability of organ perfusion in preterm neonates.


Assuntos
Coração Fetal/fisiopatologia , Inflamação/fisiopatologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Feminino , Coração Fetal/efeitos dos fármacos , Coração Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/embriologia , Isoproterenol/farmacologia , Lipopolissacarídeos , Masculino , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/embriologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Gravidez , Isoformas de Proteínas/genética , Receptores Adrenérgicos beta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos
17.
J Physiol ; 592(9): 1993-2002, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591575

RESUMO

Ventilation-induced lung injury (VILI) of preterm neonates probably contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Erythropoietin (EPO) has been suggested as a therapy for BPD. The aim of this study was to determine whether prophylactic administration of EPO reduces VILI in preterm newborn lambs. Lambs at 126 days of gestation (term is 147 days) were delivered and ventilated with a high tidal volume strategy for 15 min to cause lung injury, then received gentle ventilation until 2 h of age. Lambs were randomized to receive intravenous EPO (5000 IU kg(-1): Vent+EPO; n = 6) or phosphate-buffered saline (Vent; n = 7) soon after birth: unventilated controls (UVC; n = 8) did not receive ventilation or any treatment. Physiological parameters were recorded throughout the experimental procedure. Samples of lung were collected for histological and molecular assessment of inflammation and injury. Samples of liver were collected to assess the systemic acute phase response. Vent+EPO lambs received higher F IO 2, P aO 2 and oxygenation during the first 10 min than Vent lambs. There were no differences in physiological indices beyond this time. Total lung injury score, airway wall thickness, inflammation and haemorrhage were higher in Vent+EPO lambs than in Vent lambs. Lung inflammation and early markers of lung and systemic injury were elevated in ventilated lambs relative to unventilated lambs; EPO administration further increased lung inflammation and markers of lung and systemic injury. Prophylactic EPO exacerbates VILI, which may increase the incidence and severity of long-term respiratory disease. More studies are required before EPO can be used for lung protection in preterm infants.


Assuntos
Eritropoetina/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/etiologia , Pneumonia/induzido quimicamente , Pneumonia/etiologia , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos , Eritropoetina/administração & dosagem , Feminino , Humanos , Lesão Pulmonar/patologia , Pneumonia/patologia , Gravidez , Distribuição Aleatória , Carneiro Doméstico
18.
Reprod Sci ; 21(5): 658-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-21421894

RESUMO

OBJECTIVE: To determine the effect of intrauterine inflammation on fetal responses to umbilical cord occlusion (UCO). STUDY DESIGN: In pregnant sheep, lipopolysaccharide (LPS) or saline (SAL) was infused intra-amniotically for 4 weeks from 80 days of gestation (d). At 110 d, fetuses were instrumented for UCOs (5 × 2-minutes, 30-minute intervals: LPS + UCO, n = 6; SAL + UCO, n = 8) or no UCO (sham, n = 6) on 117 and 118 d. Tissues were collected at 126 d. RESULTS: Fetal physiological responses to UCO were similar between LPS + UCO and SAL + UCO. Histologic chorioamnionitis and increased amniotic fluid interleukin 8 (IL-8) were observed in LPS + UCO pregnancies (versus SAL + UCO, P < .05). CNPase-positive oligodendrocyte number in the cerebral white matter was lower in LPS + UCO and SAL + UCO than sham (P < .05); there was no effect on astrocytes or activated microglia/macrophages. Two of the SAL + UCO fetuses had white matter lesions; none were observed in LPS + UCO or sham. CONCLUSION: Chronic pre-existing intrauterine inflammation did not exacerbate fetal brain injury induced by intermittent UCO.


Assuntos
Encéfalo/embriologia , Encéfalo/patologia , Desenvolvimento Fetal/fisiologia , Hipóxia Fetal/patologia , Cordão Umbilical/patologia , Animais , Encéfalo/metabolismo , Doença Crônica , Feminino , Hipóxia Fetal/sangue , Feto , Inflamação/sangue , Inflamação/patologia , Gravidez , Ovinos
19.
PLoS One ; 8(9): e73457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039949

RESUMO

Diaphragmatic contractility is reduced in preterm lambs after lipopolysaccharide (LPS) exposure in utero. The mechanism of impaired fetal diaphragm contractility after LPS exposure is unknown. We hypothesise that in utero exposure to LPS induces a deficiency of mitochondrial complex activity and oxidative damage in the fetal diaphragm. To test this hypothesis, we used a well-established preterm ovine model of chorioamnionitis: Pregnant ewes received intra-amniotic (IA) saline or 10 mg LPS, at 2 d or 7 d prior to surgical delivery at 121 d GA (term = 150 d). The fetus was killed humanely immediately after delivery for tissue sampling. Mitochondrial fractions were prepared from the isolated diaphragm and mitochondrial electron transfer chain activities were evaluated using enzymatic assays. Oxidative stress was investigated by quantifying mitochondrial oxidative protein levels and determining antioxidant gene and protein (catalase, superoxide dismutase 2 and glutathione peroxidase 1) expression. The activity of the erythroid 2-related factor 2 (Nrf2)-mediated antioxidant signalling pathway was examined by quantifying the Nrf2 protein content of cell lysate and nuclear extract. A 2 d LPS exposure in utero significantly decreased electron transfer chain complex II and IV activity (p<0.05). A 7 d LPS exposure inhibited superoxide dismutase 2 and catalase expression at gene and protein levels, and Nrf2 pathway activity (p<0.05) compared with control and 2 d LPS groups, respectively. Diaphragm mitochondria accumulated oxidised protein after a 7 d LPS exposure. We conclude that intrauterine exposure to LPS induces mitochondrial oxidative stress and electron chain dysfunction in the fetal diaphragm, that is further exacerbated by impairment of the antioxidant signalling pathway and decreased antioxidant activity.


Assuntos
Corioamnionite/imunologia , Diafragma/embriologia , Diafragma/imunologia , Feto/imunologia , Lipopolissacarídeos/imunologia , Estresse Oxidativo , Animais , Diafragma/fisiologia , Transporte de Elétrons , Feminino , Mitocôndrias/imunologia , Gravidez , Ovinos
20.
J Physiol ; 591(20): 5061-70, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23878364

RESUMO

Intrauterine inflammation impairs fetal pulmonary vascular development and increases cerebral metabolic rate in fetal sheep. We hypothesized that these structural and metabolic effects of intrauterine inflammation would be accompanied by reduced fetal pulmonary blood flow and increased cerebral perfusion. Fetal sheep were instrumented at 112 days of gestation (term is 147 days) for measurement of cardiopulmonary and cerebral haemodynamics. At 118 days ewes were randomly assigned to receive intra-amniotic lipopolysaccharide (LPS, 20 mg from Escherichia coli; n = 7) or saline (control, 4 ml; n = 6). Fetal haemodynamic data were recorded continually from 1 h before intra-amniotic LPS or saline, until 144 h after. Fetal arterial blood was sampled before, and periodically after, intra-amniotic LPS or saline. End-diastolic and mean pulmonary blood flows were significantly lower than control from 48 and 96 h after LPS exposure, respectively, until the end of the experiment. Carotid blood flow was transiently increased at 96 and 120 h after LPS exposure. Carotid arterial oxygen content was lower than control from 48 h after intra-amniotic LPS. Fetal arterial lactate concentration was higher than control between 4 and 12 h after intra-amniotic LPS. Experimental intrauterine inflammation reduces pulmonary blood flow in fetal sheep, over a time course consistent with impaired pulmonary vascular development. Increased carotid blood flow after LPS administration may reflect an inflammation-induced increase in cerebral metabolic demand.


Assuntos
Circulação Cerebrovascular , Hemodinâmica , Circulação Placentária , Circulação Pulmonar , Útero/fisiopatologia , Animais , Artérias Carótidas/fisiopatologia , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Gravidez , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...