Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236086

RESUMO

The bunch length in a linac driven Free Electron Laser (FEL) is a major parameter to be characterized to optimize the final accelerator performance. In linear machines, this observable is typically determined from the beam imaged on a screen located downstream of a Transverse Deflecting Structure (TDS) used to impinge a time dependent kick along the longitudinal coordinate of the beam. This measurement is typically performed during the machine setup and only sporadically to check the beam duration, but it cannot be continuously repeated because it is time consuming and invasive. A non-invasive method to determine the electron bunch length has already been presented in the past. This method is based on the analysis of the synchrotron radiation light spot emitted by the bunch passing through a magnetic chicane, provided that the energy chirp impinged on the bunch by the upstream radio frequency structures is known. In order to overcome a systematic discrepancy affecting the synchrotron radiation monitor based results compared to the absolute TDS based ones, we implemented and optimized a machine learning approach to predict the bunch length downstream of the two SwissFEL compression stages-from about 10 fs up to about 2 ps-as well as the beam longitudinal profile at the first one.

2.
Phys Rev Lett ; 129(23): 234801, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563228

RESUMO

The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1-4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that reported the observation of self-amplified spontaneous emission (SASE) driven by plasma-accelerated beams [6,7]. However, the lack of stability and reproducibility due to the intrinsic nature of the SASE process (whose amplification starts from the shot noise of the electron beam) may hinder their effective implementation for user purposes. Here, we report a proof-of-principle experiment using plasma-accelerated beams to generate stable and reproducible FEL light seeded by an external laser. FEL radiation is emitted in the infrared range, showing the typical exponential growth of its energy over six consecutive undulators. Compared to SASE, the seeded FEL pulses have energies 2 orders of magnitude larger and stability that is 3 times higher.

3.
Phys Med ; 104: 149-159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427487

RESUMO

PURPOSE: In order to translate the FLASH effect in clinical use and to treat deep tumors, Very High Electron Energy irradiations could represent a valid technique. Here, we address the main issues in the design of a VHEE FLASH machine. We present preliminary results for a compact C-band system aiming to reach a high accelerating gradient and high current necessary to deliver a Ultra High Dose Rate with a beam pulse duration of 3µs. METHODS: The proposed system is composed by low energy high current injector linac followed by a high acceleration gradient structure able to reach 60-160 MeV energy range. To obtain the maximum energy, an energy pulse compressor options is considered. CST code was used to define the specifications RF parameters of the linac. To optimize the accelerated current and therefore the delivered dose, beam dynamics simulations was performed using TSTEP and ASTRA codes. RESULTS: The VHEE parameters Linac suitable to satisfy FLASH criteria were simulated. Preliminary results allow to obtain a maximum energy of 160 MeV, with a peak current of 200 mA, which corresponds to a charge of 600 nC. CONCLUSIONS: A promising preliminary design of VHEE linac for FLASH RT has been performed. Supplementary studies are on going to complete the characterization of the machine and to manufacture and test the RF prototypes.


Assuntos
Aceleradores de Partículas
4.
Nature ; 605(7911): 659-662, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614244

RESUMO

The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.

5.
Phys Rev Lett ; 122(11): 114801, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951354

RESUMO

The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in the field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical, and research applications. The ability to shape the beam longitudinal phase space, in particular, plays a key role in achieving high-peak brightness. Here we present a new approach that allows us to tune the longitudinal phase space of a high-brightness beam by means of plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such a solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators.

6.
Phys Rev Lett ; 121(17): 174801, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411933

RESUMO

Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices.

7.
Rev Sci Instrum ; 86(7): 073301, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233366

RESUMO

A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC_LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-band and acting as a longitudinal phase space linearizer.

8.
Phys Rev Lett ; 115(1): 014801, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26182099

RESUMO

We present the experimental evidence of the generation of coherent and statistically stable two-color free-electron laser radiation obtained by seeding an electron beam double peaked in energy with a laser pulse single spiked in frequency. The radiation presents two neat spectral lines, with time delay, frequency separation, and relative intensity that can be accurately controlled. The analysis of the emitted radiation shows a temporal coherence and a shot-to-shot regularity in frequency significantly enhanced with respect to the self-amplified spontaneous emission.


Assuntos
Elétrons , Lasers , Cor , Simulação por Computador , Processamento de Imagem Assistida por Computador , Análise Espectral/instrumentação , Análise Espectral/métodos
9.
Phys Med Biol ; 59(19): 5811-29, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25207591

RESUMO

Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.


Assuntos
Simulação por Computador , Elétrons , Dosimetria Fotográfica/métodos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/instrumentação , Calibragem , Dosimetria Fotográfica/instrumentação , Humanos , Nêutrons , Fótons/uso terapêutico , Prótons , Radiometria/métodos , Dosagem Radioterapêutica
10.
Phys Rev Lett ; 111(11): 114802, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074094

RESUMO

We present the experimental demonstration of a new scheme for the generation of ultrashort pulse trains based on free-electron-laser (FEL) emission from a multipeaked electron energy distribution. Two electron beamlets with energy difference larger than the FEL parameter ρ have been generated by illuminating the cathode with two ps-spaced laser pulses, followed by a rotation of the longitudinal phase space by velocity bunching in the linac. The resulting self-amplified spontaneous emission FEL radiation, measured through frequency-resolved optical gating diagnostics, reveals a double-peaked spectrum and a temporally modulated pulse structure.

11.
Rev Sci Instrum ; 84(2): 022703, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464185

RESUMO

The linac driven coherent THz radiation source at the SPARC-LAB test facility is able to deliver broadband THz pulses with femtosecond shaping. In addition, high peak power, narrow spectral bandwidth THz radiation can be also generated, taking advantage of advanced electron beam manipulation techniques, able to generate an adjustable train of electron bunches with a sub-picosecond length and with sub-picosecond spacing. The paper reports on the manipulation, characterization, and transport of the electron beam in the bending line transporting the beam down to the THz station, where different coherent transition radiation spectra have been measured and studied with the aim to optimize the THz radiation performances.

12.
Phys Rev Lett ; 110(4): 044801, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166168

RESUMO

We report measurements demonstrating the concept of the free-electron laser (FEL) superradiant cascade. Radiation (λ(rad) = 200 nm) at the second harmonic of a short, intense seed laser pulse (λ(seed) = 400 nm) was generated by the cascaded FEL scheme at the transition between the modulator and radiator undulator sections. The superradiance of the ultrashort pulse is confirmed by detailed measurements of the resulting spectral structure, the intensity level of the produced harmonics, and the trend of the energy growth along the undulator. These results are compared to numerical particle simulations using the FEL code GENESIS 1.3 and show a satisfactory agreement.

13.
Phys Rev Lett ; 108(16): 164801, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680723

RESUMO

Higher order harmonic generation in a free-electron laser amplifier operating in the superradiant regime [R. H. Dicke, Phys. Rev. 93, 99 (1954).] has been observed. Superradiance has been induced by seeding a single-pass amplifier with the second harmonic of a Ti:sapphire laser, generated in a ß-Barium borate crystal, at seed intensities comparable to the free-electron laser saturation intensity. Pulse energy and spectral distributions of the harmonics up to the 11th order have been measured and compared with simulations.

14.
Phys Rev Lett ; 107(22): 224801, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22182029

RESUMO

The injection of a seed in a free-electron laser (FEL) amplifier reduces the saturation length and improves the longitudinal coherence. A cascaded FEL, operating in the high-gain harmonic-generation regime, allows us to extend the beneficial effects of the seed to shorter wavelengths. We report on the first operation of a high-gain harmonic-generation free-electron laser, seeded with harmonics generated in gas. The third harmonics of a Ti:sapphire laser, generated in a gas cell, has been amplified and up-converted to its second harmonic (λ(rad)=133 nm) in a FEL cascaded configuration based on a variable number of modulators and radiators. We studied the transition between coherent harmonic generation and superradiant regime, optimizing the laser performances with respect to the number of modulators and radiators.

15.
Phys Rev Lett ; 106(14): 144801, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561195

RESUMO

We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

16.
Phys Rev Lett ; 104(5): 054801, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366769

RESUMO

In this Letter we report the first experiments aimed at the simultaneous demonstration of the emittance compensation process and velocity bunching in a high brightness electron source, the SPARC photoinjector in INFN-LNF. While a maximum compression ratio up to a factor 14 has been observed, in a particular case of interest a compression factor of 3, yielding a slice current of 120 A with less than 2 microm slice emittance, has been measured. This technique may be crucial in achieving high brightness beams in photoinjectors aiming at optimized performance of short wavelength single-pass free electron lasers or other advanced applications in laser-plasma accelerators.

17.
Rev Sci Instrum ; 79(1): 013303, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18248027

RESUMO

The design of photoinjectors for modern free electron laser linac relies heavily on particular beam behavior in the few meters after the gun. To experimentally characterize it a movable emittance meter was proposed and built [L. Catani et al., Rev. Sci. Instrum. 77, 093301 (2006)] based on the beam slicing technique. This paper addresses all the aspects of analysis of the data acquired with the emittance meter and common to any slit based emittance measurement for low energy beams.

18.
Phys Rev Lett ; 99(23): 234801, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18233375

RESUMO

In this Letter we report the first experimental observation of the double emittance minimum effect in the beam dynamics of high-brightness electron beam generation by photoinjectors; this effect, as predicted by the theory, is crucial in achieving minimum emittance in photoinjectors aiming at producing electron beams for short wavelength single-pass free electron lasers. The experiment described in this Letter was performed at the SPARC photoinjector site, during the first stage of commissioning of the SPARC project. The experiment was made possible by a newly conceived device, called an emittance meter, which allows a detailed and unprecedented study of the emittance compensation process as the beam propagates along the beam pipe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...