Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 208(4): 472-486, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406359

RESUMO

Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Transversais , Microtomografia por Raio-X , Elastina , Pulmão , Asma/complicações
2.
EuroIntervention ; 18(14): 1165-1177, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36534495

RESUMO

BACKGROUND: Bioprosthetic valve fracture (BVF) can be used to improve transcatheter heart valve (THV) haemodynamics following a valve-in-valve (ViV) intervention. However, whether BVF should be performed before or after THV deployment and the implications on durability are unknown.  Aims: We sought to assess the impact of BVF timing on long-term THV durability. METHODS: The impact of BVF timing was assessed using small ACURATE neo (ACn) or 23 mm SAPIEN 3 (S3) THV deployed in 21 mm Mitroflow valves compared to no-BVF controls. Valves underwent accelerated wear testing up to 200 million (M) cycles (equivalent to 5 years). At 200M cycles, THV were evaluated by hydrodynamic testing, second-harmonic generation (SHG) microscopy, scanning electron microscopy (SEM) and histology. RESULTS: At 200M cycles, the regurgitant fraction (RF) and effective orifice area (EOA) for the ACn were 8.03±0.30%/1.74±0.01 cm2 (no BVF), 12.48±0.70%/1.97±0.02 cm2 (BVF before ViV) and 9.29±0.38%/2.21±0.0 cm2 (BVF after ViV), respectively. For the S3 these values were 2.63±0.51%/1.26±0.01 cm2, 2.03±0.42%/1.65±0.01 cm2, and 1.62±0.38%/2.22±0.01 cm2, respectively. Further, SHG and SEM revealed a higher degree of superficial leaflet damage when BVF was performed after ViV for the ACn and S3. However, the histological analysis revealed significantly less damage, as determined by matrix density analysis, through the entire leaflet thickness when BVF was performed after ViV with the S3 and a similar but non-significant trend with the ACn.  Conclusions: BVF performed after ViV appears to offer superior long-term EOA without increased RF. Ultrastructure leaflet analysis reveals that the timing of BVF can differentially impact leaflets, with more superficial damage but greater preservation of overall leaflet structure when BVF is performed after ViV.


Assuntos
Estenose da Valva Aórtica , Bioprótese , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Desenho de Prótese , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Resultado do Tratamento
3.
BMC Bioinformatics ; 23(1): 542, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517749

RESUMO

BACKGROUND: During atherosclerosis, the narrowing of the arterial lumen is observed through the accumulation of bio compounds and the formation of plaque within artery walls. A non-linear optical imaging modality (NLOM), coherent anti-stokes Raman scattering (CARS) microscopy, can be used to image lipid-rich structures commonly found in atherosclerotic plaques. By matching the lipid's molecular vibrational frequencies (CH bonds), it is possible to map the accumulation of lipid-rich structures without the need for exogenous labelling and/or processing of the samples. CARS allows for the visualization of the morphological features of plaque. In combination with supervised machine learning, CARS imaged morphological features can be used to characterize the progression of atherosclerotic plaques.  RESULTS: Based on a set of label-free CARS images of atherosclerotic plaques (i.e. foam cell clusters) from a Watanabe heritable hyperlipidemic rabbit model, we developed an automated pipeline to classify atherosclerotic lesions based on their major morphological features. Our method uses image preprocessing to first improve the quality of the CARS-imaged plaque, followed by the segmentation of the plaque using Otsu thresholding, marker-controlled watershed, K-means segmentation and a novel independent foam cell thresholding segmentation. To define relevant morphological features, 27 quantitative features were extracted and further refined by a novel coefficient of variation feature refinement method in accordance with filter-type feature selection. Refined morphological features were supplied into three supervised machine learning algorithms; K-nearest neighbour, support vector machine and decision tree classifier. The classification pipeline showcased the ability to exploit relevant plaque morphological features to accurately classify 3 pre-defined stages of atherosclerosis: early fatty streak development (EFS) and advancing atheroma (AA) with a greater than 85% class accuracy CONCLUSIONS: Through the combination of CARS microscopy and computational methods, a powerful classification tool was developed to identify the progression of atherosclerotic plaque in an automated manner. Using a curated dataset, the classification pipeline demonstrated the ability to differentiate between EFS, EF and AA. Thus, presenting the opportunity to classify the onset of atherosclerosis at an earlier stage of development.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Coelhos , Placa Aterosclerótica/diagnóstico por imagem , Aprendizado de Máquina Supervisionado , Aterosclerose/diagnóstico por imagem , Máquina de Vetores de Suporte , Algoritmos , Lipídeos
4.
Front Bioeng Biotechnol ; 10: 1011800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394026

RESUMO

Chronic respiratory diseases remain a significant health burden worldwide. The only option for individuals with end-stage lung failure remains Lung Transplantation. However, suitable organ donor shortages and immune rejection following transplantation remain a challenge. Since alternative options are urgently required to increase tissue availability for lung transplantation, researchers have been exploring lung bioengineering extensively, to generate functional, transplantable organs and tissue. Additionally, the development of physiologically-relevant artificial tissue models for testing novel therapies also represents an important step toward finding a definite clinical solution for different chronic respiratory diseases. This mini-review aims to highlight some of the most common methodologies used in bioengineering lung scaffolds, as well as the benefits and disadvantages associated with each method in conjunction with the current areas of research devoted to solving some of these challenges in the area of lung bioengineering.

5.
Cells ; 11(2)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053300

RESUMO

The extracellular matrix (ECM) supports lung tissue architecture and physiology by providing mechanical stability and elastic recoil. Over the last several decades, it has become increasingly clear that the stiffness of the ECM governs many cellular processes, including cell-phenotype and functions during development, healing, and disease. Of all the lung ECM proteins, collagen-I is the most abundant and provides tensile strength. In many fibrotic lung diseases, the expression of collagen is increased which affects the stiffness of the surrounding environment. The goal of this study was to assess the effect on fibroblast morphology, cell death, and inflammation when exposed to 2D and 3D low (0.4 mg/mL) versus high (2.0 mg/mL) collagen-I-matrix environments that model the mechanics of the breathing lung. This study demonstrates that human fetal lung fibroblasts (HFL1), grown in a 3D collagen type-I environment compared to a 2D one, do not form cells with a myofibroblast morphology, express less F-actin stress fibers, exhibit less cell death, and significantly produce less pro-inflammatory IL-6 and IL-8 cytokines. Exposure to mechanical strain to mimic breathing (0.2 Hz) led to the loss of HFL1 fibroblast dendritic extensions as well as F-actin stress fibers within the cell cytoskeleton, but did not influence cytokine production or cell death. This dynamic assay gives researchers the ability to consider the assessment of the mechanodynamic nature of the lung ECM environment in disease-relevant models and the potential of mechano-pharmacology to identify therapeutic targets for treatment.


Assuntos
Forma Celular , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Inflamação/patologia , Pulmão/metabolismo , Citoesqueleto de Actina/metabolismo , Microambiente Celular , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Humanos , Cinética , Fenótipo , Estresse Mecânico
6.
Cells ; 10(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359929

RESUMO

Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.


Assuntos
Matriz Extracelular/metabolismo , Microscopia de Fluorescência , Animais , Doença Crônica , Humanos , Luz , Imagem Óptica , Especificidade de Órgãos
7.
Sci Rep ; 11(1): 14081, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234166

RESUMO

Mitochondria are the metabolic hub of the cell, playing a central role in regulating immune responses. Dysfunction of mitochondrial reprogramming can occur during bacterial and viral infections compromising hosts' immune signaling. Comparative evaluation of these alterations in response to bacterial and viral ligands can provide insights into a cell's ability to mount pathogen-specific responses. In this study, we used two-photon excitation fluorescence (TPEF) imaging to quantify reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) and flavin adenine dinucleotide (FAD) levels in the cell and to calculate the optical redox ratio (ORR), an indicator of mitochondrial dysfunction. Analyses were performed on RAW264.7 cells and murine bone marrow derived macrophages (BMM) stimulated with bacterial (LPS) and viral (Poly(I:C)) ligands. Responses were cell type dependent, with primary cells having significantly higher levels of FAD and higher oxygen consumption rates suggesting BMM may be more dependent on mitochondrial metabolism. Our findings also suggest that FAD-TPEF intensity may be a better predictor of mitochondrial activity and localization since it demonstrates unique mitochondrial clustering patterns in LPS vs. Poly(I:C) stimulated macrophages. Collectively, we demonstrate that TPEF imaging is a powerful label-free approach for quantifying changes in mitochondrial function and organization in macrophages following bacterial and viral stimuli.


Assuntos
Macrófagos/metabolismo , Mitocôndrias/metabolismo , Imagem Molecular , Trifosfato de Adenosina/biossíntese , Animais , Anticorpos Antivirais/imunologia , Antígenos de Bactérias/imunologia , Respiração Celular , Células Cultivadas , Processamento de Imagem Assistida por Computador , Ligantes , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Imagem Molecular/métodos , Imagem Óptica/métodos , Oxirredução , Células RAW 264.7
9.
Histochem Cell Biol ; 155(2): 279-289, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33515079

RESUMO

The alveolar ducts are connected to peripheral septal fibers which extend from the visceral pleura into interlobular septa, and are anchored to axial fibers in the small airways. Together these axial and septal fibers constitute a fiber continuum that provides tension and integrity throughout the lung. Building on the observations that alveolar ducts associated with sub-pleural alveoli are orientated perpendicular to the visceral pleura, and in parallel to each other, the goal of the present study was to investigate the nature of the collagen fiber organization within sub-pleural alveolar ducts in healthy control and elastase-induced emphysema murine lungs. Employing three-dimensional second harmonic generation imaging, the structural arrangement of fibrilar collagen fibers could be visualized in cleared murine lungs. In healthy control lungs, fibrilar collagen fibers within alveolar mouths formed the coiled collagen structure within the alveolar duct. In the elastase-treated emphysema lungs, there was loss of fibrilar collagen fibers (p < 0.01) and disruption of collagens structural organization as measured by the fibrillar collagen length (p < 0.01) and entropy (p < 0.01). Compared to the alveolar ducts from healthy controls, there was a significant increase in the area of cells (nm2, p < 0.001), and area of cells with cytoplasmic granules (nm2, p < 0.001) compared to emphysematous lungs. These results are consistent with the idea that one of the major contributors to the progressive loss of alveolar surfaces and elastic recoil in the emphysematous lung is loss of the structural integrity of the collagen scaffold that maintains the spatial relationships important for cell survival and lung function.


Assuntos
Colágeno/análise , Alvéolos Pulmonares/química , Enfisema Pulmonar/diagnóstico por imagem , Microscopia de Geração do Segundo Harmônico , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Suínos
10.
Sci Rep ; 10(1): 8721, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457454

RESUMO

In asthma, the airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release. The study objective was to investigate the release of (IL)-1 family members from primary airway epithelial-cells during differentiation, and how they affect primary airway fibroblast (PAF)-induced inflammation, extracellular matrix (ECM) production, and collagen I remodeling. The release of IL-1α/ß and IL-33 during airway epithelial differentiation was assessed over 20-days using air-liquid interface cultures. The effect of IL-1 family cytokines on airway fibroblasts grown on collagen-coated well-plates and 3-dimensional collagen gels was assessed by measurement of inflammatory mediators and ECM proteins by ELISA and western blot, as well as collagen fiber formation using non-linear optical microscopy after 24-hours. The production of IL-1α is elevated in undifferentiated asthmatic-PAECs compared to controls. IL-1α/ß induced fibroblast pro-inflammatory responses (CXCL8/IL-8, IL-6, TSLP, GM-CSF) and suppressed ECM-production (collagen, fibronectin, periostin) and the cell's ability to repair and remodel fibrillar collagen I via LOX, LOXL1 and LOXL2 activity, as confirmed by inhibition with ß-aminopropionitrile. These data support a role for epithelial-derived-IL-1 in the dysregulated repair of the asthmatic-EMTU and provides new insights into the contribution of airway fibroblasts in inflammation and airway remodeling in asthma.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Colágeno/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Sistema Respiratório/citologia , Adolescente , Adulto , Estudos de Casos e Controles , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Sistema Respiratório/metabolismo , Regulação para Cima , Adulto Jovem
11.
Biomed Opt Express ; 11(4): 1851-1863, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341852

RESUMO

Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.

12.
PLoS One ; 15(2): e0229278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32059025

RESUMO

Multiphoton microscopy is a powerful, non-invasive technique to image biological specimens. One current limitation of multiphoton microscopy is resolution as many of the biological molecules and structures investigated by research groups are similar in size or smaller than the diffraction limit. To date, the combination of multiphoton and super-resolution imaging has proved technically challenging for biology focused laboratories to implement. Here we validate that the commercial super-resolution Airyscan detector from ZEISS, which is based on image scanning microscopy, can be integrated under warranty with a pulsed multi-photon laser to enable multiphoton microscopy with super-resolution. We demonstrate its biological application in two different imaging modalities, second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), to measure the fibre thicknesses of collagen and elastin molecules surpassing the diffraction limit by a factor of 1.7±0.3x and 1.4±0.3x respectively, in human heart and lung tissues, and 3-dimensional in vitro models. We show that enhanced resolution and signal-to-noise of SHG using the Airyscan compared to traditional GaAs detectors allows for automated and precise measurement of collagen fibres using texture analysis in biological tissues.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Coração/fisiologia , Pulmão/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Músculos Papilares/metabolismo , Sistema Respiratório/metabolismo , Humanos , Pulmão/ultraestrutura , Músculos Papilares/ultraestrutura , Sistema Respiratório/ultraestrutura
13.
Am J Respir Crit Care Med ; 200(4): 431-443, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30950644

RESUMO

Rationale: Histologic stains have been used as the gold standard to visualize extracellular matrix (ECM) changes associated with airway remodeling in asthma, yet they provide no information on the biochemical and structural characteristics of the ECM, which are vital to understanding alterations in tissue function.Objectives: To demonstrate the use of nonlinear optical microscopy (NLOM) and texture analysis algorithms to image fibrillar collagen (second harmonic generation) and elastin (two-photon excited autofluorescence), to obtain biochemical and structural information on the remodeled ECM environment in asthma.Methods: Nontransplantable donor lungs from donors with asthma (n = 13) and control (n = 12) donors were used for the assessment of airway collagen and elastin fibers by NLOM, and extraction of lung fibroblasts for in vitro experiments.Measurements and Main Results: Fibrillar collagen is not only increased but also highly disorganized and fragmented within large and small asthmatic airways compared with control subjects, using NLOM imaging. Furthermore, such structural alterations are present in pediatric and adult donors with asthma, irrespective of fatal disease. In vitro studies demonstrated that asthmatic airway fibroblasts are deficient in their packaging of fibrillar collagen-I and express less decorin, important for collagen fibril packaging. Packaging of collagen fibrils was found to be more disorganized in asthmatic airways compared with control subjects, using transmission electron microscopy.Conclusions: NLOM imaging enabled the structural assessment of the ECM, and the data suggest that airway remodeling in asthma involves the progressive accumulation of disorganized fibrillar collagen by airway fibroblasts. This study highlights the future potential clinical application of NLOM to assess airway remodeling in vivo.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/metabolismo , Elastina/metabolismo , Colágenos Fibrilares/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Adolescente , Adulto , Asma/patologia , Criança , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Elastina/ultraestrutura , Matriz Extracelular , Feminino , Colágenos Fibrilares/ultraestrutura , Humanos , Técnicas In Vitro , Pulmão/citologia , Pulmão/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Microscopia Óptica não Linear , Adulto Jovem
14.
J Appl Physiol (1985) ; 126(3): 638-646, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629475

RESUMO

Structural proteins like collagen and elastin are major constituents of the extracellular matrix (ECM). ECM degradation and remodeling in diseases significantly impact the microorganization of these structural proteins. Therefore, tracking the changes of collagen and elastin fiber morphological features within ECM impacted by disease progression could provide valuable insight into pathological processes such as tissue fibrosis and atherosclerosis. Benefiting from its intrinsic high-resolution imaging power and superior biochemical specificity, nonlinear optical microscopy (NLOM) is capable of providing information critical to the understanding of ECM remodeling. In this study, alterations of structural fibrillar proteins such as collagen and elastin in arteries excised from atherosclerotic rabbits were assessed by the combination of NLOM images and textural analysis methods such as fractal dimension (FD) and directional analysis (DA). FD and DA were tested for their performance in tracking the changes of extracellular elastin and fibrillar collagen remodeling resulting from atherosclerosis progression/aging. Although other methods of image analysis to study the organization of elastin and collagen structures have been reported, the simplified calculations of FD and DA presented in this work prove that they are viable strategies for extracting and analyzing fiber-related morphology from disease-impacted tissues. Furthermore, this study also demonstrates the potential utility of FD and DA in studying ECM remodeling caused by other pathological processes such as respiratory diseases, several skin conditions, or even cancer. NEW & NOTEWORTHY Textural analyses such as fractal dimension (FD) and directional analysis (DA) are straightforward and computationally viable strategies to extract fiber-related morphological data from optical images. Therefore, objective, quantitative, and automated characterization of protein fiber morphology in extracellular matrix can be realized by using these methods in combination with digital imaging techniques such as nonlinear optical microscopy (NLOM), a highly effective visualization tool for fibrillar collagen and elastic network. Combining FD and DA with NLOM is an innovative approach to track alterations of structural fibrillar proteins. The results illustrated in this study not only prove the effectiveness of FD and DA methods in extracellular protein characterization but also demonstrate their potential value in clinical and basic biomedical research where protein microstructure characterization is critical.


Assuntos
Envelhecimento/metabolismo , Artérias/metabolismo , Aterosclerose/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Animais , Matriz Extracelular/metabolismo , Fractais , Coelhos
15.
Int J Mol Sci ; 18(8)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809791

RESUMO

The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation.


Assuntos
Cicatriz/metabolismo , Cicatriz/patologia , Colágeno/metabolismo , Microscopia Óptica não Linear/métodos , Animais , Humanos
16.
J Appl Physiol (1985) ; 123(2): 473-481, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596268

RESUMO

Abnormal thickening of the airway basement membrane is one of the hallmarks of airway remodeling in asthma. The present protocols for measuring the basement membrane involve the use of stained tissue sections and measurements of the basement membrane thickness at certain intervals, followed by the calculation of the geometric mean thickness for each airway. This report describes an automated, unbiased approach which uses color segmentation to identify structures of interest on stained sections and Euclidean distance mapping to measure the thickness distribution of airway structures. This method was applied to study the thickness distribution of the basement membrane and airway epithelium in lungs donated for research from seven nonasthmatic and eight asthmatic age- and sex-matched donors. A total of 60 airways were assessed. We report that the thickness and thickness distribution of the basement membrane and airway epithelium are increased in large and small airways of asthmatics compared with nonasthmatics. Using this method we were able to demonstrate the heterogeneity in the thickness of the basement membrane and airway epithelium within individual airways of asthmatic subjects. This new computational method enables comprehensive and objective quantification of airway structures, which can be used to quantify heterogeneity of airway remodeling in obstructive lung diseases such as asthma and chronic obstructive pulmonary disease.NEW & NOTEWORTHY The described application of Euclidean distance mapping provides an unbiased approach to study the extent and thickness distribution of changes in tissue structures. This approach will enable researchers to use computer-aided analysis of structural changes within lung tissue to understand the heterogeneity of airway remodeling in lung diseases.


Assuntos
Asma/fisiopatologia , Membrana Basal/fisiopatologia , Pulmão/fisiopatologia , Adolescente , Adulto , Remodelação das Vias Aéreas/fisiologia , Criança , Pré-Escolar , Epitélio/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
17.
Anal Chem ; 86(13): 6346-54, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24892226

RESUMO

Quantification of atherosclerosis has been a challenging task owing to its complex pathology. In this study, we validated a quantitative approach for assessing atherosclerosis progression in a rabbit model using a numerical matrix, optical index for plaque burden, derived directly from the nonlinear optical microscopic images captured on the atherosclerosis-affected blood vessel. A positive correlation between this optical index and the severity of atherosclerotic lesions, represented by the age of the rabbits, was established based on data collected from 21 myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits with age ranging between new-born and 27 months old. The same optical index also accurately identified high-risk locations for atherosclerotic plaque formation along the entire aorta, which was validated by immunohistochemical fluorescence imaging.


Assuntos
Aterosclerose/patologia , Imagem Óptica/métodos , Placa Aterosclerótica/patologia , Animais , Aterosclerose/complicações , Modelos Animais de Doenças , Progressão da Doença , Hiperlipidemias/complicações , Microscopia de Fluorescência/métodos , Infarto do Miocárdio/etiologia , Dinâmica não Linear , Placa Aterosclerótica/complicações , Coelhos
18.
Sci Rep ; 3: 2190, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23846580

RESUMO

In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage.


Assuntos
Colágenos Fibrilares , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Aorta/metabolismo , Aorta/patologia , Feminino , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Curva ROC , Coelhos , Ratos , Máquina de Vetores de Suporte
19.
Biophys Rev ; 4(4): 323-334, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28510209

RESUMO

Pathological understanding of arterial diseases is mainly attributable to histological observations based on conventional tissue staining protocols. The emerging development of nonlinear optical microscopy (NLOM), particularly in second-harmonic generation, two-photon excited fluorescence and coherent Raman scattering, provides a new venue to visualize pathological changes in the extracellular matrix caused by atherosclerosis progression. These techniques in general require minimal tissue preparation and offer rapid three-dimensional imaging. The capability of label-free microscopic imaging enables disease impact to be studied directly on the bulk artery tissue, thus minimally perturbing the sample. In this review, we look at recent progress in applications related to arterial disease imaging using various forms of NLOM.

20.
Phys Med Biol ; 56(16): 5319-34, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21799233

RESUMO

The composition and structure of atherosclerotic lesions can be directly related to the risk they pose to the patient. Multimodal nonlinear optical (NLO) microscopy provides a powerful means to visualize the major extracellular components of the plaque that critically determine its structure. Textural features extracted from NLO images were investigated for their utility in providing quantitative descriptors of structural and compositional changes associated with plaque development. Ten texture parameters derived from the image histogram and gray level co-occurrence matrix were examined that highlight specific structural and compositional motifs that distinguish early and late stage plaques. Tonal-texture parameters could be linked to key histological features that characterize vulnerable plaque: the thickness and density of the fibrous cap, size of the atheroma, and the level of inflammation indicated through lipid deposition. Tonal and texture parameters from NLO images provide objective metrics that correspond to structural and biochemical changes that occur within the vessel wall in early and late stage atherosclerosis.


Assuntos
Artérias/patologia , Microscopia/métodos , Dinâmica não Linear , Fenômenos Ópticos , Placa Aterosclerótica/patologia , Animais , Artérias/metabolismo , Placa Aterosclerótica/metabolismo , Coelhos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...