Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068568

RESUMO

The huge development of climatic change highly affects our crop production and soil fertility. Also, the rise in the uncontrolled, excessive use of chemical fertilizers diminishes the soil prosperity and generates pollutants, threatening all environmental life forms, including us. Replacement of these chemical fertilizers with natural ones is becoming an inevitable environmental strategy. In our study, we evaluated the responses of Pisum sativum L. to the action of single species and consortiums of plant growth-promoting bacteria (Azotobacter chroococcum, Bacillus megaterium, and Bacillus cerkularice) in clay and new reclaimed soil types in terms of phenotype, yield components, and physiological and biochemical responses. Data analysis showed single or consortium microbial inoculation significantly increased the measured traits under clay and calcareous sandy soils compared to the control. Shoot physiological and biochemical activities, and seed biochemical activities were significantly enhanced with the inoculation of pea seeds with three types of bacteria in both soil types. The bud numbers, fresh weight, and seeds' dry weight increased in seeds treated with A. chroococcum and B. megaterium in the sandy soil. Taken together, these findings suggested that the inoculation of plants with PGP bacteria could be used to diminish the implementation of chemical fertilizer and improve the goodness of agricultural products. These findings expand the understanding of the responsive mechanism of microbial inoculation under different soil types, especially at physiological and biochemical levels.

2.
Plant Physiol Biochem ; 158: 34-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296844

RESUMO

Garlic (Allium sativum L.) is an economically important vegetable crop which is used worldwide for culinary and medicinal purposes. Soil salinity constrains the yield components of garlic. Understanding the responsive mechanism of garlic to salinity is crucial to improve its tolerance. To address this problem, two garlic cultivars differing in salt tolerance were used to investigate the long-term adaptive responses to salt stress at phenotype and transcriptome levels. Phenotypic analysis showed four-week salt stress significantly decreased the yield components of salt-sensitive cultivar. Transcriptomes of garlics were de novo assembled and mined for transcriptional activities regulated by salt stress. The results showed that photosynthesis, energy allocation, and secondary metabolism were commonly enriched in both sensitive and tolerant genotypes. Moreover, distinct responsive patterns were also observed between the two genotypes. Compared with the salt-tolerant genotype, most transcripts encoding enzymes in the phenylpropanoid biosynthesis pathway were coordinately down regulated in the salt-sensitive genotype, resulting in alternation of the content and composition of lignin. Meanwhile, transcripts encoding the enzymes in the brassinosteroid (BR) biosynthesis pathway were also systematically down regulated in the salt-sensitive genotypes. Taken together, these results suggested that BR-mediated lignin accumulation possibly plays an important role in garlic adaption to salt stress. These findings expand the understanding of responsive mechanism of garlic to salt stress.


Assuntos
Brassinosteroides/química , Alho/fisiologia , Lignina/química , Estresse Salino , Estresse Fisiológico , Transcriptoma , Alho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo
3.
Sci Rep ; 10(1): 4867, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184427

RESUMO

High callus production is a feasible way to improve the propagation coefficient of garlic. It remains unknown how genotypes and explants affect garlic callus formation. In the present investigation, we found that there were significant differences in callus formation among garlic varieties. Tip explants were the best calli-producing source, and 91.05% of the explants from four varieties, on average, formed calli after 45 d of primary culturing. Upper leaf parts explants produced lower values. Among the different varieties and explant types, tip explants of variety T141 induced calli in the shortest time and had the greatest callus fresh weight at 45 d. An endogenous hormone contents analysis showed that auxins (indole-3-acetic acid and methyl indole-3-acetic acetate), cytokinins (trans-zeatin and dihydrozeatin), gibberellins4, 9,15,19,24 and 53, abscisic acid, jasmonic acid, jasmonoyl-L-isoleucine, and dihydrojasmonic acid were significantly greater in the tips than those in the upper leaf parts. High endogenous jasmonic acid content might play important roles in callus formation. These results will help us not only establish an efficient garlic callus induction protocol that can be applied to large-scale callus multiplication and regeneration, and to genetically improvement of garlic production, but also understand endogenous hormone roles in tissue/organ differentiation and dedifferentiation.


Assuntos
Alho/crescimento & desenvolvimento , Alho/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Alho/metabolismo , Genótipo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Cultura Primária de Células/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...