Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 288(1): 26-32, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26171734

RESUMO

MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α-CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α-CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments.


Assuntos
Androstanóis/toxicidade , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Piridinas/toxicidade , Receptores Citoplasmáticos e Nucleares/agonistas , Androstanóis/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Proliferação de Células/efeitos dos fármacos , Receptor Constitutivo de Androstano , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica
2.
ISRN Oncol ; 2013: 680136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691363

RESUMO

Proteoglycans (PGs) are expressed on the cell surface and extracellular matrix of all mammalian cells and tissues, playing an important role in cell-cell and cell-matrix interactions and signaling. Changes in the expression and functional properties of individual PGs in prostate cancer are shown, although common patterns of PGs expression in normal and tumour prostate tissues remain unknown. In this study, expression of cell surface and stromal proteoglycans (glypican-1, perlecan, syndecan-1, aggrecan, versican, NG2, brevican, decorin, and lumican) in normal tissue and prostate tumours was determined by RT-PCR analysis and immunostaining with core protein- and GAG-specific antibodies. In normal human prostate tissue, versican, decorin, and biglycan were predominant proteoglycans localised in tissue stroma, and syndecan-1 and glypican-1 were expressed mainly by epithelial cells. In prostate tumours, complex changes in proteoglycans occur, with a common trend towards decrease of decorin and lumican expression, overall increase of syndecan-1 and glypican-1 expression in tumour stroma along with its disappearance in tumour epithelial cells, and aggrecan and NG2 expressions in some prostate tumours. All the changes result in the highly individual proteoglycan expression patterns in different prostate tumours, which may be potentially useful as molecular markers for prostate cancer personalised diagnosis and treatment.

3.
Cancer Med ; 2(5): 654-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24403231

RESUMO

Heparansulfate proteoglycans (HSPG) play an important role in cell-cell and cell-matrix interactions and signaling, and one of the key enzymes in heparansulfate biosynthesis is d-glucuronyl C5-epimerase (GLCE). A tumor suppressor function has been demonstrated for GLCE in breast and lung carcinogenesis; however, no data are available as to the expression and regulation of the gene in prostate cancer. In this study, decreased GLCE expression was observed in 10% of benign prostate hyperplasia (BPH) tissues and 53% of prostate tumors, and increased GLCE mRNA levels were detected in 49% of BPH tissues and 21% of tumors. Statistical analysis showed a positive correlation between increased GLCE expression and Gleason score, TNM staging, and prostate-specific antigen (PSA) level in the prostate tumors (Pearson correlation coefficients GLCE/Gleason = 0.56, P < 0.05; GLCE/TNM = 0.62, P < 0.05; and GLCE/PSA = 0.88, P < 0.01), suggesting GLCE as a candidate molecular marker for advanced prostate cancer. Immunohistochemical analysis revealed an intratumoral heterogeneity of GLCE protein levels both in BPH and prostate cancer cells, resulting in a mixed population of GLCE-expressing and nonexpressing epithelial cells in vivo. A model experiment on normal (PNT2) and prostate cancer (LNCaP, PC3, DU145) cell lines in vitro showed a 1.5- to 2.5-fold difference in GLCE expression levels between the cancer cell lines and an overall decrease in GLCE expression in cancer cells. Methyl-specific polymerase chain reaction (PCR), bisulfite sequencing, and deoxy-azacytidin (aza-dC) treatment identified differential GLCE promoter methylation (LNCaP 70-72%, PC3 32-35%, DU145, and PNT2 no methylation), which seems to contribute to heterogeneous GLCE expression in prostate tumors. The obtained results reveal the complex deregulation of GLCE expression in prostatic diseases compared with normal prostate tissue and suggest that GLCE may be used as a potential model to study the functional role of intratumor cell heterogeneity in prostate cancer progression.


Assuntos
Carboidratos Epimerases/biossíntese , Epigênese Genética/genética , Neoplasias da Próstata/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Carboidratos Epimerases/genética , Metilação de DNA , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Humanos , Masculino , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Antígeno Prostático Específico/metabolismo , Hiperplasia Prostática/enzimologia , Hiperplasia Prostática/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Neoplásico/genética , Células Tumorais Cultivadas
4.
Anal Biochem ; 344(2): 183-92, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16083846

RESUMO

We have previously reported the synthesis of four alpha-cyano-containing ethers based on 2-naphthaldehyde (2-NA) as cytochrome P450 (P450) fluorescent substrates. Activity detection was based on the formation of fluorescent 2-NA following substrate hydrolysis. A major limitation of these substrates was the need to remove NADPH, a required cofactor for P450 oxidation, before measuring 2-NA fluorescence. In this article, we report the synthesis of a new series of novel P450 substrates using 6-dimethylamino-2-naphthaldehyde (6-DMANA), which has a green fluorescent emission that is well separated from the NADPH spectrum. A major advantage of the 6-DMANA substrates is that NADPH removal is not required before fluorescence detection. We used eight alpha-cyano ether-based substrates to determine the O-dealkylation activity of human, mouse, and rat liver microsomes. In addition, substrate activities were compared with the commercial substrate 7-ethoxyresorufin (7-ER). The catalytic turnover rates of both the 6-DMANA- and 2-NA-based substrates were in some cases threefold faster than the catalytic turnover rate of 7-ER. The 2-NA-based substrates had greater turnover than did the 6-DMANA-based substrates. Murine and rat liver microsomes prepared from animals that had been treated with various P450 inducers were used to examine for isozyme-selective turnover of the substrates. The vastly improved optical properties and synthetic flexibility of the alpha-cyano ether compounds suggest that they are possibly good general P450 substrates.


Assuntos
Aldeídos/química , Cianetos/química , Sistema Enzimático do Citocromo P-450/análise , Éteres/química , Naftalenos/química , Aldeídos/síntese química , Animais , Citocromo P-450 CYP1A1/análise , Sistema Enzimático do Citocromo P-450/biossíntese , Remoção de Radical Alquila , Indução Enzimática , Corantes Fluorescentes , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , NADP/química , Naftalenos/síntese química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...