Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423917

RESUMO

Shigella is an important human-adapted pathogen which contributes to a large global burden of diarrhoeal disease. Together with the increasing threat of antimicrobial resistance and lack of an effective vaccine, there is great urgency to identify novel therapeutics and preventatives to combat Shigella infection. In this review, we discuss the development of innovative technologies and animal models to study mechanisms underlying Shigella infection of humans. We examine recent literature introducing (i) the organ-on-chip model, and its substantial contribution towards understanding the biomechanics of Shigella infection, (ii) the zebrafish infection model, which has delivered transformative insights into the epidemiological success of clinical isolates and the innate immune response to Shigella, (iii) a pioneering oral mouse model of shigellosis, which has helped to discover new inflammasome biology and protective mechanisms against shigellosis, and (iv) the controlled human infection model, which has been effective in translating basic research into human health impact and assessing suitability of novel vaccine candidates. We consider the recent contributions of each model and discuss where the future of modelling Shigella infection lies.

2.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131137

RESUMO

Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.


Assuntos
Disenteria Bacilar , Animais , Humanos , Disenteria Bacilar/genética , Shigella flexneri/genética , Shigella flexneri/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/microbiologia , Inflamação/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Eur J Cell Biol ; 102(4): 151359, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683588

RESUMO

Staphylococcus aureus, a Gram-positive bacterial pathogen, is an urgent health threat causing a wide range of clinical infections. Originally viewed as a strict extracellular pathogen, accumulating evidence has revealed S. aureus to be a facultative intracellular pathogen subverting host cell signalling to support invasion. The majority of clinical isolates produce fibronectin-binding proteins A and B (FnBPA and FnBPB) to interact with host integrin α5ß1, a key component of focal adhesions. S. aureus binding of integrin α5ß1 promotes its clustering on the host cell surface, triggering activation of focal adhesion kinase (FAK) and cytoskeleton rearrangements to promote bacterial invasion into non-phagocytic cells. Here, we discover that septins, a component of the cytoskeleton that assembles on membranes, are recruited as collar-like structures with actin to S. aureus invasion sites engaging integrin α5ß1. To investigate septin recruitment to the plasma membrane in a bacteria-free system, we used FnBPA-coated latex beads and showed that septins are recruited upon activation of integrin α5ß1. SEPT2 depletion reduced S. aureus invasion, but increased surface expression of integrin α5 and adhesion of S. aureus to host cells. Consistent with this, SEPT2 depletion increased cellular protein levels of integrin α5 and ß1 subunits, as well as FAK. Collectively, these results provide insights into regulation of integrin α5ß1 and invasion of S. aureus by the septin cytoskeleton.


Assuntos
Integrina alfa5beta1 , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Integrina alfa5beta1/metabolismo , Septinas/metabolismo , Integrina alfa5/metabolismo , Fibronectinas , Citoesqueleto/metabolismo
5.
Sci Adv ; 9(36): eadf9706, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672585

RESUMO

Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and ß-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.


Assuntos
Infecções por Enterobacteriaceae , Epigênese Genética , Mycobacterium bovis , Neutrófilos , Imunidade Treinada , beta-Glucanas , Infecções por Enterobacteriaceae/imunologia , Animais , Peixe-Zebra , Larva , Neutrófilos/imunologia , Neutrófilos/metabolismo , Shigella flexneri/fisiologia , Mycobacterium bovis/imunologia , beta-Glucanas/administração & dosagem , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Infect Dis ; 228(8): 1108-1118, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37556724

RESUMO

Shigella represents a paraphyletic group of enteroinvasive Escherichia coli. More than 40 Shigella serotypes have been reported. However, most cases within the men who have sex with men (MSM) community are attributed to 3 serotypes: Shigella sonnei unique serotype and Shigella flexneri 2a and 3a serotypes. Using the zebrafish model, we demonstrate that Shigella can establish persistent infection in vivo. Bacteria are not cleared by the immune system and become antibiotic tolerant. Establishment of persistent infection depends on the O-antigen, a key constituent of the bacterial surface and a serotype determinant. Representative isolates associated with MSM transmission persist in zebrafish, while representative isolates of a serotype not associated with MSM transmission do not. Isolates of a Shigella serotype establishing persistent infections elicited significantly less macrophage death in vivo than isolates of a serotype unable to persist. We conclude that zebrafish are a valuable platform to illuminate factors underlying establishment of Shigella persistent infection in humans.


Assuntos
Disenteria Bacilar , Minorias Sexuais e de Gênero , Shigella , Humanos , Masculino , Animais , Peixe-Zebra , Sorogrupo , Homossexualidade Masculina , Infecção Persistente , Disenteria Bacilar/microbiologia , Shigella flexneri
8.
Autophagy Rep ; 2(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325703

RESUMO

Septins are cytoskeletal proteins implicated in numerous cellular processes including cytokinesis and morphogenesis. In the case of infection by Shigella flexneri, septins assemble into cage-like structures that entrap cytosolic bacteria targeted by autophagy. The interplay between septin cage entrapment and bacterial autophagy is poorly understood. We used a correlative light and cryo-soft X-ray tomography (cryo-SXT) pipeline to study septin cage entrapment of Shigella in its near-native state. Septin cages could be identified as X-ray dense structures, indicating they contain host cell proteins and lipids consistent with their autophagy links. Airyscan confocal microscopy of Shigella-septin cages showed that septins and lysine 63 (K63)-linked ubiquitin chains are present in separate bacterial microdomains, suggesting they are recruited separately. Finally, Cryo-SXT and live-cell imaging revealed an interaction between septins and microtubule-associated protein light chain 3B (LC3B)-positive membranes during autophagy of Shigella. Collectively our data present a new model for how septin-caged Shigella are targeted to autophagy.

9.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37161932

RESUMO

Shigella are Gram-negative bacterial pathogens responsible for bacillary dysentery (also called shigellosis). The absence of a licensed vaccine and widespread emergence of antibiotic resistance has led the World Health Organisation (WHO) to highlight Shigella as a priority pathogen requiring urgent attention. Several infection models have been useful to explore the Shigella infection process; yet, we still lack information regarding events taking place in vivo. Here, using a Shigella-zebrafish infection model and high-content microscopy, we developed an automated microscopy workflow to non-invasively study fluorescently labelled bacteria and neutrophils in vivo. We applied our workflow to antibiotic-treated zebrafish, and demonstrate that antibiotics reduce bacterial burden and not neutrophil recruitment to the hindbrain ventricle. We discovered that nalidixic acid (a bactericidal antibiotic) can work with leukocytes in an additive manner to control Shigella flexneri infection and can also restrict dissemination of Shigella sonnei from the hindbrain ventricle. We envision that our automated microscopy workflow, applied here to study the interactions between Shigella and neutrophils as well as antibiotic efficacy in zebrafish, can be useful to innovate treatments for infection control in humans.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peixe-Zebra , Microscopia , Fluxo de Trabalho , Disenteria Bacilar/tratamento farmacológico
10.
mBio ; 14(4): e0088223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255304

RESUMO

Enteroinvasive Escherichia coli (EIEC) and Shigella are closely related agents of bacillary dysentery. It is widely viewed that EIEC and Shigella species evolved from E. coli via independent acquisitions of a large virulence plasmid (pINV) encoding a type 3 secretion system (T3SS). Sequence Type (ST)99 O96:H19 E. coli is a novel clone of EIEC responsible for recent outbreaks in Europe and South America. Here, we use 92 whole genome sequences to reconstruct a dated phylogeny of ST99 E. coli, revealing distinct phylogenomic clusters of pINV-positive and -negative isolates. To study the impact of pINV acquisition on the virulence of this clone, we developed an EIEC-zebrafish infection model showing that virulence of ST99 EIEC is thermoregulated. Strikingly, zebrafish infection using a T3SS-deficient ST99 EIEC strain and the oldest available pINV-negative isolate reveals a separate, temperature-independent mechanism of virulence, indicating that ST99 non-EIEC strains were virulent before pINV acquisition. Taken together, these results suggest that an already pathogenic E. coli acquired pINV and that virulence of ST99 isolates became thermoregulated once pINV was acquired. IMPORTANCE Enteroinvasive Escherichia coli (EIEC) and Shigella are etiological agents of bacillary dysentery. Sequence Type (ST)99 is a clone of EIEC hypothesized to cause human disease by the recent acquisition of pINV, a large plasmid encoding a type 3 secretion system (T3SS) that confers the ability to invade human cells. Using Bayesian analysis and zebrafish larvae infection, we show that the virulence of ST99 EIEC isolates is highly dependent on temperature, while T3SS-deficient isolates encode a separate temperature-independent mechanism of virulence. These results indicate that ST99 non-EIEC isolates may have been virulent before pINV acquisition and highlight an important role of pINV acquisition in the dispersal of ST99 EIEC in humans, allowing wider dissemination across Europe and South America.


Assuntos
Disenteria Bacilar , Infecções por Escherichia coli , Shigella , Animais , Humanos , Escherichia coli , Virulência/genética , Peixe-Zebra , Sistemas de Secreção Tipo III/genética , Teorema de Bayes , Temperatura , Plasmídeos/genética , Shigella/genética
11.
Cytoskeleton (Hoboken) ; 80(7-8): 266-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855298

RESUMO

Septins are evolutionarily conserved GTP-binding proteins known for their roles in cell division and host defence against Shigella infection. Although septin group members are viewed to function as hetero-oligomeric complexes, the role of individual septins within these complexes or in isolation is poorly understood. Decades of work using mouse models has shown that some septins (including SEPT7) are essential for animal development, while others (including SEPT6) are dispensable, suggesting that some septins may compensate for the absence of others. The zebrafish genome encodes 19 septin genes, representing the full complement of septin groups described in mice and humans. In this report, we characterise null mutants for zebrafish Sept6 (a member of the SEPT6 group) and Sept15 (a member of the SEPT7 group) and test their role in zebrafish development and host defence against Shigella infection. We show that null mutants for Sept6 and Sept15 are both viable, and that expression of other zebrafish septins are not significantly affected by their mutation. Consistent with previous reports using knockdown of Sept2, Sept7b, and Sept15, we show that Sept6 and Sept15 are required for host defence against Shigella infection. These results highlight Shigella infection of zebrafish as a powerful system to study the role of individual septins in vivo.


Assuntos
Disenteria Bacilar , Septinas , Animais , Disenteria Bacilar/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Septinas/genética , Septinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939083

RESUMO

During host cell invasion, Shigella escapes to the cytosol and polymerizes actin for cell-to-cell spread. To restrict cell-to-cell spread, host cells employ cell-autonomous immune responses including antibacterial autophagy and septin cage entrapment. How septins interact with the autophagy process to target Shigella for destruction is poorly understood. Here, we employed a correlative light and cryo-soft X-ray tomography (cryo-SXT) pipeline to study Shigella septin cage entrapment in its near-native state. Quantitative cryo-SXT showed that Shigella fragments mitochondria and enabled visualization of X-ray-dense structures (∼30 nm resolution) surrounding Shigella entrapped in septin cages. Using Airyscan confocal microscopy, we observed lysine 63 (K63)-linked ubiquitin chains decorating septin-cage-entrapped Shigella. Remarkably, septins and K63 chains are present in separate bacterial microdomains, indicating they are recruited separately during antibacterial autophagy. Cryo-SXT and live-cell imaging revealed an interaction between septins and LC3B-positive membranes during autophagy of Shigella. Together, these findings demonstrate how septin-caged Shigella are targeted for autophagy and provide fundamental insights into autophagy-cytoskeleton interactions.


Assuntos
Septinas , Shigella , Septinas/metabolismo , Shigella/metabolismo , Citoesqueleto/metabolismo , Autofagia/fisiologia , Ubiquitinas/metabolismo
13.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821087

RESUMO

Septins are an evolutionarily conserved protein family whose members form hetero-oligomeric complexes that assemble into filaments and higher-order structures. In this issue, Martins et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202203016) and Cannon et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202204063) report that heteromer composition impacts the physiological role of septin filaments in yeast and human cells.


Assuntos
Saccharomyces cerevisiae , Septinas , Humanos , Citoesqueleto/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Multimerização Proteica
14.
ACS Synth Biol ; 12(3): 709-721, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36802585

RESUMO

The discovery of clustered, regularly interspaced, short palindromic repeats (CRISPR) and the Cas9 RNA-guided nuclease provides unprecedented opportunities to selectively kill specific populations or species of bacteria. However, the use of CRISPR-Cas9 to clear bacterial infections in vivo is hampered by the inefficient delivery of cas9 genetic constructs into bacterial cells. Here, we use a broad-host-range P1-derived phagemid to deliver the CRISPR-Cas9 chromosomal-targeting system into Escherichia coli and the dysentery-causing Shigella flexneri to achieve DNA sequence-specific killing of targeted bacterial cells. We show that genetic modification of the helper P1 phage DNA packaging site (pac) significantly enhances the purity of packaged phagemid and improves the Cas9-mediated killing of S. flexneri cells. We further demonstrate that P1 phage particles can deliver chromosomal-targeting cas9 phagemids into S. flexneri in vivo using a zebrafish larvae infection model, where they significantly reduce the bacterial load and promote host survival. Our study highlights the potential of combining P1 bacteriophage-based delivery with the CRISPR chromosomal-targeting system to achieve DNA sequence-specific cell lethality and efficient clearance of bacterial infection.


Assuntos
Anti-Infecciosos , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edição de Genes , Bacteriófago P1/genética , Peixe-Zebra/genética , Shigella flexneri/genética , Animais
15.
Blood ; 141(8): 930-944, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564030

RESUMO

In response to tissue injury, within seconds the ultra-large glycoprotein von Willebrand factor (VWF) is released from endothelial storage organelles (Weibel-Palade bodies) into the lumen of the blood vasculature, where it leads to the recruitment of platelets. The marked size of VWF multimers represents an unprecedented burden on the secretory machinery of endothelial cells (ECs). ECs have evolved mechanisms to overcome this, most notably an actomyosin ring that forms, contracts, and squeezes out its unwieldy cargo. Inhibiting the formation or function of these structures represents a novel therapeutic target for thrombotic pathologies, although characterizing proteins associated with such a dynamic process has been challenging. We have combined APEX2 proximity labeling with an innovative dual loss-of-function screen to identify proteins associated with actomyosin ring function. We show that p21 activated kinase 2 (PAK2) recruits septin hetero-oligomers, a molecular interaction that forms a ring around exocytic sites. This cascade of events controls actomyosin ring function, aiding efficient exocytic release. Genetic or pharmacological inhibition of PAK2 or septins led to inefficient release of VWF and a failure to form platelet-catching strings. This new molecular mechanism offers additional therapeutic targets for the control of thrombotic disease and is highly relevant to other secretory systems that employ exocytic actomyosin machinery.


Assuntos
Actomiosina , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Actomiosina/metabolismo , Septinas/metabolismo , Quinases Ativadas por p21/metabolismo , Células Endoteliais/metabolismo , Proteômica , Exocitose/fisiologia , Citocinese , Corpos de Weibel-Palade/metabolismo
16.
Cytoskeleton (Hoboken) ; 80(7-8): 254-265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35460543

RESUMO

Apoptosis is a form of regulated cell death essential for tissue homeostasis and embryonic development. Apoptosis also plays a key role during bacterial infection, yet some intracellular bacterial pathogens (such as Shigella flexneri, whose lipopolysaccharide can block apoptosis) can manipulate cell death programs as an important survival strategy. Septins are a component of the cytoskeleton essential for mitochondrial dynamics and host defense, however, the role of septins in regulated cell death is mostly unknown. Here, we discover that septins promote mitochondrial (i.e., intrinsic) apoptosis in response to treatment with staurosporine (a pan-kinase inhibitor) or etoposide (a DNA topoisomerase inhibitor). Consistent with a role for septins in mitochondrial dynamics, septins promote the release of mitochondrial protein cytochrome c in apoptotic cells and are required for the proteolytic activation of caspase-3, caspase-7, and caspase-9 (core components of the apoptotic machinery). Apoptosis of HeLa cells induced in response to infection by S. flexneri ΔgalU (a lipopolysaccharide mutant unable to block apoptosis) is also septin-dependent. In vivo, zebrafish larvae are significantly more susceptible to infection with S. flexneri ΔgalU (as compared to infection with wildtype S. flexneri), yet septin deficient larvae are equally susceptible to infection with S. flexneri ΔgalU and wildtype S. flexneri. These data provide a new molecular framework to understand the complexity of mitochondrial apoptosis and its ability to combat bacterial infection.

17.
Dis Model Mech ; 15(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504391

RESUMO

Louis Pasteur made seminal discoveries in microbiology, immunology and vaccinology that transformed clinical science and saved millions of lives. Since the 19th century, our ability to study infectious disease has undergone radical changes due to newly emerging technologies and infection models. In this Editorial, I consider Pasteur's impact on our ability to understand and combat infectious disease in the context of two modern-day pandemics: coronavirus disease 2019 (COVID-19) and antimicrobial resistance (AMR). During the COVID-19 pandemic, we witnessed remarkable ambition to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to innovate effective vaccines to prevent disease. For the comparatively overlooked pandemic of AMR, we require the same level of urgency to develop alternative approaches to combat antibiotic-resistant bacterial strains that cause millions of deaths annually. Pasteur's statement "chance only favours the mind which is prepared" is a principle that captures 'l'esprit Pasteur'. This principle should continue to guide modern-day research on infectious disease, and for this we need to support the development of predictive disease models and cutting-edge mechanistic research that prepare us for discovery and therapeutic impact.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2 , Pandemias , Antibacterianos
18.
Dis Model Mech ; 15(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801644

RESUMO

Pyroptosis, a regulated form of pro-inflammatory cell death, is characterised by cell lysis and by the release of cytokines, damage- and pathogen-associated molecular patterns. It plays an important role during bacterial infection, where it can promote an inflammatory response and eliminate the replicative niche of intracellular pathogens. Recent work, using a variety of bacterial pathogens, has illuminated the versatility of pyroptosis, revealing unexpected and important concepts underlying host defence. In this Review, we overview the molecular mechanisms underlying pyroptosis and discuss their role in host defence, from the single cell to the whole organism. We focus on recent studies using three cellular microbiology paradigms - Mycobacterium tuberculosis, Salmonella Typhimurium and Shigella flexneri - that have transformed the field of pyroptosis. We compare insights discovered in tissue culture, zebrafish and mouse models, highlighting the advantages and disadvantages of using these complementary infection models to investigate pyroptosis and for modelling human infection. Moving forward, we propose that in-depth knowledge of pyroptosis obtained from complementary infection models can better inform future studies using higher vertebrates, including humans, and help develop innovative host-directed therapies to combat bacterial infection.


Assuntos
Infecções Bacterianas , Mycobacterium tuberculosis , Animais , Camundongos , Piroptose , Salmonella typhimurium , Peixe-Zebra
19.
Nat Commun ; 12(1): 6764, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799563

RESUMO

The field of cellular microbiology, rooted in the co-evolution of microbes and their hosts, studies intracellular pathogens and their manipulation of host cell machinery. In this review, we highlight emerging technologies and infection models that recently promoted opportunities in cellular microbiology. We overview the explosion of microscopy techniques and how they reveal unprecedented detail at the host-pathogen interface. We discuss the incorporation of robotics and artificial intelligence to image-based screening modalities, biochemical mapping approaches, as well as dual RNA-sequencing techniques. Finally, we describe chips, organoids and animal models used to dissect biophysical and in vivo aspects of the infection process. As our knowledge of the infected cell improves, cellular microbiology holds great promise for development of anti-infective strategies with translational applications in human health.


Assuntos
Anti-Infecciosos/farmacologia , Técnicas Citológicas , Infecções/tratamento farmacológico , Técnicas Microbiológicas , Microscopia/métodos , Animais , Anti-Infecciosos/uso terapêutico , Inteligência Artificial , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Interações Hospedeiro-Patógeno , Humanos , Infecções/microbiologia , Microscopia/tendências , Organoides , Análise de Sequência de RNA , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências
20.
Nat Commun ; 12(1): 4511, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301939

RESUMO

Septins are cytoskeletal proteins that assemble into hetero-oligomeric complexes and sense micron-scale membrane curvature. During infection with Shigella flexneri, an invasive enteropathogen, septins restrict actin tail formation by entrapping bacteria in cage-like structures. Here, we reconstitute septin cages in vitro using purified recombinant septin complexes (SEPT2-SEPT6-SEPT7), and study how these recognize bacterial cells and assemble on their surface. We show that septin complexes recognize the pole of growing Shigella cells. An amphipathic helix domain in human SEPT6 enables septins to sense positively curved membranes and entrap bacterial cells. Shigella strains lacking lipopolysaccharide components are more efficiently entrapped in septin cages. Finally, cryo-electron tomography of in vitro cages reveals how septins assemble as filaments on the bacterial cell surface.


Assuntos
Actinas/metabolismo , Disenteria Bacilar/metabolismo , Proteínas Recombinantes/metabolismo , Septinas/metabolismo , Shigella flexneri/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Disenteria Bacilar/microbiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lipopolissacarídeos/metabolismo , Microscopia de Fluorescência , Mutação , Ligação Proteica , Septinas/genética , Shigella flexneri/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...