Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 274(33): 22999-3005, 1999 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-10438466

RESUMO

An activation domain in p67(phox) (residues within 199-210) is essential for cytochrome b(558)-dependent activation of NADPH superoxide (O2(-.)) generation in a cell-free system (Han, C.-H., Freeman, J. L. R., Lee, T., Motalebi, S. A., and Lambeth, J. D. (1998) J. Biol. Chem. 273, 16663-16668). To determine the steady state reduction flavin in the presence of highly absorbing hemes, 8-nor-8-S-thioacetamido-FAD ("thioacetamido-FAD") was reconstituted into the flavocytochrome, and the fluorescence of its oxidized form was monitored. Thioacetamido-FAD-reconstituted cytochrome showed lower activity (7% versus 100%) and increased steady state flavin reduction (28 versus <5%) compared with the enzyme reconstituted with native FAD. Omission of p67(phox) decreased the percent steady state reduction of the flavin to 4%, but omission of p47(phox) had little effect. The activation domain on p67(phox) was critical for regulating flavin reduction, since mutations in this region that decreased O2(-.) generation also decreased the steady state reduction of flavin. Thus, the activation domain on p67(phox) regulates the reductive half-reaction for FAD. This reaction is comprised of the binding of NADPH followed by hydride transfer to the flavin. Kinetic deuterium isotope effects along with K(m) values permitted calculation of the K(d) for NADPH. (R)-NADPD but not (S)-NADPD showed kinetic deuterium isotope effects on V and V/K of about 1.9 and 1.5, respectively, demonstrating stereospecificity for the R hydride transfer. The calculated K(d) for NADPH was 40 microM in the presence of wild type p67(phox) and was approximately 55 microM using the weakly activating p67(phox)(V205A). Thus, the activation domain of p67(phox) regulates the reduction of FAD but has only a small effect on NADPH binding, consistent with a dominant effect on hydride/electron transfer from NADPH to FAD.


Assuntos
Grupo dos Citocromos b/metabolismo , Flavinas/metabolismo , NADP/metabolismo , Fosfoproteínas/metabolismo , Deutério , Elétrons , Reativadores Enzimáticos/farmacologia , Cinética , NADPH Oxidases/metabolismo , Piridinas/farmacologia , Superóxidos/metabolismo
2.
J Biol Chem ; 273(27): 16663-8, 1998 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-9642219

RESUMO

Superoxide generation by the neutrophil respiratory burst oxidase (NADPH oxidase) can be reconstituted in a cell-free system using flavocytochrome b558 and the cytosolic proteins p47(phox), p67(phox), and Rac. p47(phox) functions as an adaptor protein; it increases the affinity of p67(phox) and Rac in the NADPH oxidase complex, but is not essential when high concentrations of these proteins are used (Freeman, J. L., and Lambeth, J. D. (1996) J. Biol. Chem. 271, 22578-22582), implying that p67(phox) and/or Rac directly regulates enzyme activity. Herein, we describe an activation domain in p67(phox) that is essential for NADPH oxidase activity. A series of C-terminal truncation mutants of p67(phox) showed that residues 211 to the C terminus (residue 526) are not needed for cell-free activity. However, shorter truncations were inactive, pointing to an activation domain within the region spanning residues 199-210. p67(phox) mutated at single amino acid residues within this region showed diminished activity, and p67(phox) V204A was completely inactive. The effects of mutations on activity were independent of p47(phox), and mutations did not affect the binding of p67(phox) to Rac. In the presence of wild-type p67(phox), the V204A mutant was a potent inhibitor of superoxide generation, and inhibition was partially reversed by high concentrations of p67(phox), but not by p47(phox) or Rac. The V204A mutant competed with native p67(phox) for translocation to neutrophil plasma membrane, indicating that p67(phox) V204A assembles to form an inactive complex. The data imply a direct activation of flavocytochrome b558 by an activation domain in p67(phox).


Assuntos
NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sistema Livre de Células , Grupo dos Citocromos b/metabolismo , Primers do DNA , Ativação Enzimática , Proteínas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Fosfoproteínas/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas rac de Ligação ao GTP
3.
J Biol Chem ; 272(30): 18834-41, 1997 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-9228059

RESUMO

Activation of the respiratory burst oxidase involves the assembly of the membrane-associated flavocytochrome b558 with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Herein, the interaction between Rac and p67(phox) is explored using functional and physical methods. Mutually facilitated binding (EC50) of Rac1 and p67(phox) within the NADPH oxidase complex was demonstrated using steady state kinetic methods measuring NADPH-dependent superoxide generation. Direct binding of Rac1 and Rac2 to p67(phox) was shown using a fluorescent analog of GTP (methylanthraniloyl guanosine-5'-[beta,gamma-imido]triphosphate) bound to Rac as a reporter group. An increase in the methylanthraniloyl fluorescence was seen with added p67(phox) but not p47(phox), and the emission maximum shifted from 445 to 440 nm. Rac1 and Rac2 bound to p67(phox) with a 1:1 stoichiometry and with Kd values of 120 and 60 nM, respectively. Mutational studies (Freeman, J., Kreck, M., Uhlinger, D. J., and Lambeth, J. D. (1994) Biochemistry 33, 13431-13435; Freeman, J. L., Abo, A., and Lambeth, J. D. (1996) J. Biol. Chem. 271, 19794-19801) previously identified two regions in Rac1 that are important for activity: the "effector region" (residues 26-45) and the "insert region" (residues 124-135). Proteins mutated in the effector region (Rac1(N26H), Rac1(I33N), and Rac1(D38N)) showed a marked increase in both the Kd and the EC50, indicating that mutations in this region affect activity by inhibiting Rac binding to p67(phox). Insert region mutations (Rac1(K132E) and L134R), while showing markedly elevated EC50 values, bound with normal affinity to p67(phox). The structure of Rac1 determined by x-ray crystallography reveals that the effector region and the insert region are located in defined sectors on the surface of Rac1. A model is discussed in which the Rac1 effector region binds to p67(phox), the C terminus binds to the membrane, and the insert region interacts with a different protein component, possibly cytochrome b558.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , NADH NADPH Oxirredutases/metabolismo , Fosfoproteínas/metabolismo , Animais , Ligação Competitiva , Bovinos , Cristalografia por Raios X , Corantes Fluorescentes/metabolismo , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Modelos Moleculares , NADPH Oxidases/metabolismo , Mapeamento de Peptídeos , Fosfoproteínas/genética , Mutação Puntual , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , ortoaminobenzoatos/metabolismo , Proteínas rac de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...