Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 15(5): 581-593, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27775869

RESUMO

Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the ß-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized ß-aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Lignina/metabolismo , Sphingomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Glucose/metabolismo , Lignina/química , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/genética
2.
Plant J ; 84(3): 558-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26361733

RESUMO

The biosynthetic pathway for the cyanogenic glucoside dhurrin in sorghum has previously been shown to involve the sequential production of (E)- and (Z)-p-hydroxyphenylacetaldoxime. In this study we used microsomes prepared from wild-type and mutant sorghum or transiently transformed Nicotiana benthamiana to demonstrate that CYP79A1 catalyzes conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime whereas CYP71E1 catalyzes conversion of (E)-p-hydroxyphenylacetaldoxime into the corresponding geometrical Z-isomer as required for its dehydration into a nitrile, the next intermediate in cyanogenic glucoside synthesis. Glucosinolate biosynthesis is also initiated by the action of a CYP79 family enzyme, but the next enzyme involved belongs to the CYP83 family. We demonstrate that CYP83B1 from Arabidopsis thaliana cannot convert the (E)-p-hydroxyphenylacetaldoxime to the (Z)-isomer, which blocks the route towards cyanogenic glucoside synthesis. Instead CYP83B1 catalyzes the conversion of the (E)-p-hydroxyphenylacetaldoxime into an S-alkyl-thiohydroximate with retention of the configuration of the E-oxime intermediate in the final glucosinolate core structure. Numerous microbial plant pathogens are able to detoxify Z-oximes but not E-oximes. The CYP79-derived E-oximes may play an important role in plant defense.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucosinolatos/metabolismo , Oximas/metabolismo , Sorghum/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Isomerismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sorghum/genética , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA