Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(17): 26645-26657, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615095

RESUMO

Optical spectrometers have propelled scientific and technological advancements in a wide range of fields. While sophisticated systems with excellent performance metrics are serving well in controlled laboratory environments, many applications require systems that are portable, economical, and robust to optical misalignment. Here, we propose and demonstrate a spectrometer that uses a planar one-dimensional photonic crystal cavity as a dispersive element and a reconstructive computational algorithm to extract spectral information from spatial patterns. The simple fabrication and planar architecture of the photonic crystal cavity render our spectrometry platform economical and robust to optical misalignment. The reconstructive algorithm allows miniaturization and portability. The intensity transmitted by the photonic crystal cavity has a wavelength-dependent spatial profile. We generate the spatial transmittance function of the system using finite-difference time-domain method and also estimate the dispersion relation. The transmittance function serves as a transfer function in our reconstructive algorithm. We show accurate estimation of various kinds of input spectra. We also show that the spectral resolution of the system depends on the cavity linewidth that can be improved by increasing the number of periodic layers in distributed Bragg mirrors. Finally, we experimentally estimate the center wavelength and linewidth of the spectrum of an unknown light emitting diode. The estimated values are in good agreement with the values measured using a commercial spectrometer.

2.
Adv Mater ; 33(21): e2008668, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33837605

RESUMO

The evolution of polygonal-shaped nanoholes on the (100) surface of germanium, aided by focused ion beam induced self-organization, is presented. The energetic beam of ions creates a viscous phase which, at a thermodynamical minimum, leads to surface self-organization. A directed viscous-flow along the predefined nanoholes provides well-ordered polygonal nanostructures, ranging from triangles to hexagons and octagons, as desired. The amorphization exhibiting a confined viscous-flow at the walls of nanoholes is attributed to the localized melting zones induced by site-specific thermal spikes during ion irradiation, as revealed by microscopy and molecular dynamics studies. This leads to a local self-organization in the vicinity of each circular nanohole via a viscous-fingering process at the nanoscale. Such controlled self-organization, with the help of a predefined scanning grid, transforms the circular holes into the desired polygonal shape. The present morphology manipulation promises to surmount the barriers concerning the size reduction efforts in the field of nanofabrication.

3.
ACS Appl Mater Interfaces ; 12(5): 6581-6589, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31910617

RESUMO

In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion-solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile-compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.

4.
Nanoscale Adv ; 1(8): 3067-3077, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133581

RESUMO

Site-specific ion-irradiation is a promising tool fostering strain-engineering of freestanding nanostructures to realize 3D-configurations towards various functionalities. We first develop a novel approach of fabricating freestanding 3D silicon nanostructures by low dose ion-implantation followed by chemical-etching. The fabricated nanostructures can then be deformed bidirectionally by varying the local irradiation of kiloelectronvolt gallium ions. By further tuning the ion-dose and energy, various nanostructure configurations can be realized, thus extending its horizon to new functional 3D-nanostructures. It has been revealed that at higher-energies (∼30 kV), the nanostructures can exhibit two-stage bidirectional-bending in contrast to the bending towards the incident-ions at lower-energies (∼16), implying an effective transfer of kinetic-energy. Computational studies show that the spatial-distribution of implanted-ions, dislocated silicon atoms, has potentially contributed to the local development of stresses. Nanocharacterization confirms the formation of two distinguishable ion-irradiated and un-irradiated regions, while the smoothened morphology of the irradiated-surface suggested that the bending is also coupled with sputtering at higher ion-doses. The bending effects associated with local ion irradiation in contrast to global ion irradiation are presented, with the mechanism elucidated. Finally, weaving of nanostructures is demonstrated through strain-engineering for new nanoscale artefacts such as ultra-long fully-bent nanowires, nano-hooks, and nano-meshes. The aligned growth of bacterial-cells is observed on the fabricated nanowires, and a mesh based "bacterial-trap" for site-specific capture of bacterial cells is demonstrated emphasizing the versatile nature of the current approach.

5.
Opt Express ; 17(1): 260-5, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19129895

RESUMO

The use of a two-dimensional (2D) high-index-contrast grating (HCG) with square periodic lattice is proposed to realize surface-emitting lasers. This is possible because the use of 2D HCG, in which multiple resonant leaky modes are excited by the 2 orthogonal directions of the grating, causes the high reflective zone to be split into two regions. Hence, a dip of the reflectivity is formed to support the excitation of a resonant cavity-mode inside the 2D HCG. With suitable design on the dimensions of the 2D HCGs, Q factor as high as 1032 can be achieved.


Assuntos
Meios de Contraste/química , Lasers , Desenho de Equipamento , Fibras Ópticas , Fótons , Refratometria , Semicondutores , Análise Espectral , Propriedades de Superfície
6.
Opt Express ; 16(13): 9554-64, 2008 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-18575522

RESUMO

Near-field focusing properties of zone plates are investigated in the visible regime by a 3-dimensional finite-difference time-domain method. It is shown that Frensel zone plates (FZPs) with metallic coatings can achieve subwavelength focusing in the visible wavelength. The characteristics of subwavelength focusing are found to be independent of the type of metal coatings used. All the FZPs exhibit similar shift in focal length and depth of focus when compared with classical calculations. These results indicate that plasmonic waves do not contribute to subwavelength focusing. Instead the subwavelength focusing characteristic is attributed to the interference of diffracted evanescent waves from a large numerical aperture. It is found that the near-field focusing of FZPs suppresses higher order foci such that the corresponding diffraction efficiency is improved. The use of phase zone plate structured on glass without opaque coating is proposed to improve the diffraction efficiency of subwavelength focusing.


Assuntos
Vidro/química , Lentes , Modelos Teóricos , Refratometria/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Elementos Finitos , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...