Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647044

RESUMO

The possible effects of mutations on stability and function of a protein can only be understood in the context of protein 3D structure. The MutationExplorer webserver maps sequence changes onto protein structures and allows users to study variation by inputting sequence changes. As the user enters variants, the 3D model evolves, and estimated changes in energy are highlighted. In addition to a basic per-residue input format, MutationExplorer can also upload an entire replacement sequence. Previously the purview of desktop applications, such an upload can back-mutate PDB structures to wildtype sequence in a single step. Another supported variation source is human single nucelotide polymorphisms (SNPs), genomic coordinates input in VCF format. Structures are flexibly colorable, not only by energetic differences, but also by hydrophobicity, sequence conservation, or other biochemical profiling. Coloring by interface score reveals mutation impacts on binding surfaces. MutationExplorer strives for efficiency in user experience. For example, we have prepared 45 000 PDB depositions for instant retrieval and initial display. All modeling steps are performed by Rosetta. Visualizations leverage MDsrv/Mol*. MutationExplorer is available at: http://proteinformatics.org/mutation_explorer/.

2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464310

RESUMO

The possible effects of mutations on stability and function of a protein can only be understood in the context of protein 3D structure. The MutationExplorer webserver maps sequence changes onto protein structures and allows users to study variation by inputting sequence changes. As the user enters variants, the 3D model evolves, and estimated changes in energy are highlighted. In addition to a basic per-residue input format, MutationExplorer can also upload an entire replacement sequence. Previously the purview of desktop applications, such an upload can back-mutate PDB structures to wildtype sequence in a single step. Another supported variation source is human single nucelotide polymorphisms (SNPs), genomic coordinates input in VCF format.

3.
HGG Adv ; 3(4): 100131, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035247

RESUMO

Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.

4.
Biochemistry ; 55(2): 348-59, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26704937

RESUMO

The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings.


Assuntos
Amidas/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Ésteres/química , Indometacina/farmacologia , Biologia Computacional , Ciclo-Oxigenase 2/genética , Ativação Enzimática/efeitos dos fármacos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
5.
J Phys Chem B ; 118(18): 4717-26, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24758720

RESUMO

We report here specialized functions incorporated recently in the rigid-body docking software toolkit TagDock to utilize electron paramagnetic resonance derived (EPR-derived) interresidue distance measurements and spin-label accessibility data. The TagDock package extensions include a custom methanethiosulfonate spin label rotamer library to enable explicit, all-atom spin-label side-chain modeling and scripts to evaluate spin-label surface accessibility. These software enhancements enable us to better utilize the biophysical data routinely available from various spin-labeling experiments. To illustrate the power and utility of these tools, we report the refinement of an ankyrin:CDB3 complex model that exhibits much improved agreement with the EPR distance measurements, compared to model structures published previously.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Anquirinas/química , Algoritmos , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anquirinas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Multimerização Proteica , Software
6.
Biochemistry ; 52(33): 5577-84, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23875708

RESUMO

We report here new computational tools and strategies to efficiently generate three-dimensional models for oligomeric biomolecular complexes in cases where there is limited experimental restraint data to guide the docking calculations. Our computational tools are designed to rapidly and exhaustively enumerate all geometrically possible docking poses for an oligomeric complex, rather than generate detailed, atomic-resolution models. Experimental data, such as interatomic distance measurements, are then used to select and refine docking poses that are consistent with the experimental restraints. Our computational toolkit is designed for use with sparse data sets to generate intermediate-resolution docking models, and utilizes distance difference matrix analysis to identify further restraint measurements that will provide maximum additional structural refinement. Thus, these tools can be used to help plan optimal residue positions for probe incorporation in labor-intensive biophysical experiments such as chemical cross-linking, electron paramagnetic resonance, or Förster resonance energy transfer spectroscopy studies. We present benchmark results for docking the collection of all 176 heterodimer protein complexes from the ZDOCK database, as well as a protein homodimer with recently collected experimental distance restraints, to illustrate the toolkit's capabilities and performance, and to demonstrate how distance difference matrix analysis can automatically identify and prioritize additional restraint measurements that allow us to rapidly optimize docking poses.


Assuntos
Algoritmos , Biologia Computacional/métodos , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas/química , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/metabolismo , Reprodutibilidade dos Testes
7.
J Biol Chem ; 286(23): 20746-57, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21493712

RESUMO

The adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported. However, structural data on how these proteins assemble to form a stable complex have not been reported. In the current studies, site-directed spin labeling, in combination with electron paramagnetic resonance (EPR) and double electron-electron resonance, has been utilized to map the binding interfaces of the two proteins in the complex and to obtain inter-protein distance constraints. These data have been utilized to construct a family of structural models that are consistent with the full range of experimental data. These models indicate that an extensive area on the peripheral domain of cdb3 binds to ankyrin repeats 18-20 on the top loop surface of AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface for binding of cdb3 to AnkD34. Because a second dimer of cdb3 is known to bind to ankyrin repeats 7-12 of the membrane binding domain of ankyrin-R, the current models have significant implications regarding the structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to full-length ankyrin-R in the erythrocyte membrane.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Anquirinas/química , Membrana Eritrocítica/química , Modelos Moleculares , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Repetição de Anquirina , Anquirinas/genética , Anquirinas/metabolismo , Cristalografia por Raios X , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Humanos , Estrutura Quaternária de Proteína
8.
J Med Chem ; 51(16): 4911-9, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18665581

RESUMO

A series of novel derivatives of the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide were synthesized as potential agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma). Nonpolar and aromatic substitutions on the benzylidene ring as well as retention of the carboxylic acid side chain were required for optimal activity. Compound 24 was as potent a compound as any other in the series with an EC50 of 0.1 microM for the induction of peroxisome proliferator response element (PPRE)-luciferase activity. Direct binding of compound 24 to PPARgamma was demonstrated by the displacement of [(3)H]troglitazone, a PPARgamma agonist, in a scintillation proximity assay. Compound 24 also stimulated the binding of PPARgamma to a PPRE-containing oligonucleotide and induced expression of liver fatty-acid binding protein (L-FABP) and adipocyte fatty acid-binding protein (aP2), two established PPARgamma target genes. Taken together, these compounds represent potential leads in the development of novel PPARgamma agonists.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , PPAR gama/efeitos dos fármacos , Sulindaco/análogos & derivados , Sulindaco/farmacologia , Compostos de Benzilideno/síntese química , PPAR gama/agonistas , RNA Interferente Pequeno , Relação Estrutura-Atividade
9.
J Med Chem ; 48(10): 3613-20, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15887968

RESUMO

We have used molecular modeling studies and molecular dynamics simulations to generate three-dimensional models for cyclooxygenase-1 complexes with a series of indomethacin ethanolamide derivatives. These studies provide a plausible explanation for the stereoselective ligand binding preferences observed experimentally for these inhibitors and predict the general binding mode as well as specific structural details for the ligand-enzyme complexes. These studies provide insight into the nature of cyclooxygenase-1 interactions with a series of novel inhibitors and should help increase our understanding of key structural determinants for cyclooxygenase isozyme-selective inhibitor binding.


Assuntos
Inibidores de Ciclo-Oxigenase/química , Etanolaminas/química , Indometacina/análogos & derivados , Indometacina/química , Prostaglandina-Endoperóxido Sintases/química , Animais , Sítios de Ligação , Ciclo-Oxigenase 1 , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Ovinos , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...