Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427684

RESUMO

CRISPR has been widely characterized as a defense system against phages and other invading elements in bacteria and archaea. A low percentage of Ralstonia solanacearum species complex (RSSC) strains possess the CRISPR array and the CRISPR-associated proteins (Cas) that would confer immunity against various phages. In order to provide a wide-range screen of the CRISPR presence in RSSC, we analyzed 378 genomes of RSSC strains to find the CRISPR locus. We found that 20.1%, 14.3%, and 54.5% of the R. solanacearum, R. pseudosolanacearum, and R. syzygii strains respectively possess the CRISPR locus. In addition, we performed further analysis to identify the respective phages that are restricted by the CRISPR arrays. We found 252 different phages infecting different strains of RSSC, by means of the identification of similarities between the protospacers in phages and spacers in bacteria. We compiled this information in a database with web access called CRISPRals (https://crisprals.yachaytech.edu.ec/). Additionally, we made available a number of tools to detect and identify CRISPR array and Cas genes in genomic sequences that could be uploaded by users. Finally, a matching tool to relate bacteria spacer with phage protospacer sequences is available. CRISPRals is a valuable resource for the scientific community that contributes to the study of bacteria-phage interaction and a starting point that will help to design efficient phage therapy strategies.

2.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136570

RESUMO

Over the past decade, genetic engineering has witnessed a revolution with the emergence of a relatively new genetic editing tool based on RNA-guided nucleases: the CRISPR/Cas9 system. Since the first report in 1987 and characterization in 2007 as a bacterial defense mechanism, this system has garnered immense interest and research attention. CRISPR systems provide immunity to bacteria against invading genetic material; however, with specific modifications in sequence and structure, it becomes a precise editing system capable of modifying the genomes of a wide range of organisms. The refinement of these modifications encompasses diverse approaches, including the development of more accurate nucleases, understanding of the cellular context and epigenetic conditions, and the re-designing guide RNAs (gRNAs). Considering the critical importance of the correct performance of CRISPR/Cas9 systems, our scope will emphasize the latter approach. Hence, we present an overview of the past and the most recent guide RNA web-based design tools, highlighting the evolution of their computational architecture and gRNA characteristics over the years. Our study explains computational approaches that use machine learning techniques, neural networks, and gRNA/target interactions data to enable predictions and classifications. This review could open the door to a dynamic community that uses up-to-date algorithms to optimize and create promising gRNAs, suitable for modern CRISPR/Cas9 engineering.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Algoritmos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...