Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-18941301

RESUMO

The glycine cleavage system catalyzes the following reversible reaction: Glycine + H(4)folate + NAD(+) <==> 5,10-methylene-H(4)folate + CO(2) + NH(3) + NADH + H(+)The glycine cleavage system is widely distributed in animals, plants and bacteria and consists of three intrinsic and one common components: those are i) P-protein, a pyridoxal phosphate-containing protein, ii) T-protein, a protein required for the tetrahydrofolate-dependent reaction, iii) H-protein, a protein that carries the aminomethyl intermediate and then hydrogen through the prosthetic lipoyl moiety, and iv) L-protein, a common lipoamide dehydrogenase. In animals and plants, the proteins form an enzyme complex loosely associating with the mitochondrial inner membrane. In the enzymatic reaction, H-protein converts P-protein, which is by itself a potential alpha-amino acid decarboxylase, to an active enzyme, and also forms a complex with T-protein. In both glycine cleavage and synthesis, aminomethyl moiety bound to lipoic acid of H-protein represents the intermediate that is degraded to or can be formed from N(5),N(10)-methylene-H(4)folate and ammonia by the action of T-protein. N(5),N(10)-Methylene-H(4)folate is used for the biosynthesis of various cellular substances such as purines, thymidylate and methionine that is the major methyl group donor through S-adenosyl-methionine. This accounts for the physiological importance of the glycine cleavage system as the most prominent pathway in serine and glycine catabolism in various vertebrates including humans. Nonketotic hyperglycinemia, a congenital metabolic disorder in human infants, results from defective glycine cleavage activity. The majority of patients with nonketotic hyperglycinemia had lesions in the P-protein gene, whereas some had mutant T-protein genes. The only patient classified into the degenerative type of nonketotic hyperglycinemia had an H-protein devoid of the prosthetic lipoyl residue. The crystallography of normal T-protein as well as biochemical characterization of recombinants of the normal and mutant T-proteins confirmed why the mutant T-proteins had lost enzyme activity. Putative mechanisms of cellular injuries including those in the central nervous system of patients with nonketotic hyperglycinemia are discussed.


Assuntos
Glicina/sangue , Animais , Glicina/química , Humanos , Hidrólise
2.
J Mol Biol ; 371(1): 222-34, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17570395

RESUMO

Lipoic acid is an essential cofactor of the alpha-ketoacid dehydrogenase complexes and the glycine cleavage system. It is covalently attached to a specific lysine residue of the subunit of the complexes. The bovine lipoyltransferase (bLT) catalyzes the lipoic acid attachment reaction using lipoyl-AMP as a substrate, forming a lipoylated protein and AMP. To gain insights into the reaction mechanism at the atomic level, we have determined the crystal structure of bLT at 2.10 A resolution. Unexpectedly, the purified recombinant bLT contains endogenous lipoyl-AMP. The structure of bLT consists of N-terminal and C-terminal domains, and lipoyl-AMP is bound to the active site in the N-terminal domain, adopting a U-shaped conformation. The lipoyl moiety is buried in the hydrophobic pocket, forming van der Waals interactions, and the AMP moiety forms numerous hydrogen bonds with bLT in another tunnel-like cavity. These interactions work together to expose the C10 atom of lipoyl-AMP to the surface of the bLT molecule. The carbonyl oxygen atom of lipoyl-AMP interacts with the invariant Lys135. The interaction might stimulate the positive charge of the C10 atom of lipoyl-AMP, and consequently facilitate the nucleophilic attack by the lysine residue of the lipoate-acceptor protein, accompanying the bond cleavage between the carbonyl group and the phosphate group. We discuss the structural differences between bLT and the lipoate-protein ligase A from Escherichia coli and Thermoplasma acidophilum. We further demonstrate that bLT in mitochondria also contains endogenous lipoylmononucleotide, being ready for the lipoylation of apoproteins.


Assuntos
Aciltransferases/química , Monofosfato de Adenosina/química , Estrutura Terciária de Proteína , Aciltransferases/genética , Aciltransferases/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Escherichia coli/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Thermoplasma/enzimologia
3.
J Mol Biol ; 351(5): 1146-59, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16051266

RESUMO

T-protein, a component of the glycine cleavage system, catalyzes the formation of ammonia and 5,10-methylenetetrahydrofolate from the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein. Several mutations in the human T-protein gene cause non-ketotic hyperglycinemia. To gain insights into the effect of disease-causing mutations and the catalytic mechanism at the molecular level, crystal structures of human T-protein in free form and that bound to 5-methyltetrahydrofolate (5-CH3-H4folate) have been determined at 2.0 A and 2.6 A resolution, respectively. The overall structure consists of three domains arranged in a cloverleaf-like structure with the central cavity, where 5-CH3-H4folate is bound in a kinked shape with the pteridine group deeply buried into the hydrophobic pocket and the glutamyl group pointed to the C-terminal side surface. Most of the disease-related residues cluster around the cavity, forming extensive hydrogen bonding networks. These hydrogen bonding networks are employed in holding not only the folate-binding space but also the positions and the orientations of alpha-helix G and the following loop in the middle region, which seems to play a pivotal role in the T-protein catalysis. Structural and mutational analyses demonstrated that Arg292 interacts through water molecules with the folate polyglutamate tail, and that the invariant Asp101, located close to the N10 group of 5-CH3-H4folate, might play a key role in the initiation of the catalysis by increasing the nucleophilic character of the N10 atom of the folate substrate for the nucleophilic attack on the aminomethyl lipoate intermediate. A clever mechanism of recruiting the aminomethyl lipoate arm to the reaction site seems to function as a way of avoiding the release of toxic formaldehyde.


Assuntos
Cristalografia por Raios X/métodos , Glicina/química , Hidroximetil e Formil Transferases/química , Hiperglicinemia não Cetótica/metabolismo , Sequência de Aminoácidos , Aminometiltransferase , Animais , Arginina/química , Asparagina/química , Sítios de Ligação , Domínio Catalítico , Análise por Conglomerados , Análise Mutacional de DNA , Formaldeído/química , Humanos , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
4.
J Biol Chem ; 280(39): 33645-51, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16043486

RESUMO

Lipoate-protein ligase A (LplA) catalyzes the formation of lipoyl-AMP from lipoate and ATP and then transfers the lipoyl moiety to a specific lysine residue on the acyltransferase subunit of alpha-ketoacid dehydrogenase complexes and on H-protein of the glycine cleavage system. The lypoyllysine arm plays a pivotal role in the complexes by shuttling the reaction intermediate and reducing equivalents between the active sites of the components of the complexes. We have determined the X-ray crystal structures of Escherichia coli LplA alone and in a complex with lipoic acid at 2.4 and 2.9 angstroms resolution, respectively. The structure of LplA consists of a large N-terminal domain and a small C-terminal domain. The structure identifies the substrate binding pocket at the interface between the two domains. Lipoic acid is bound in a hydrophobic cavity in the N-terminal domain through hydrophobic interactions and a weak hydrogen bond between carboxyl group of lipoic acid and the Ser-72 or Arg-140 residue of LplA. No large conformational change was observed in the main chain structure upon the binding of lipoic acid.


Assuntos
Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ligases/química , Ácido Tióctico/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Escherichia coli/química , Proteínas de Escherichia coli/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Análise Espectral Raman , Ácido Tióctico/química , Ácido Tióctico/genética
5.
J Biol Chem ; 278(12): 10067-72, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12531904

RESUMO

T-protein, a component of the glycine cleavage system, catalyzes a tetrahydrofolate-dependent reaction. Previously, we reported a conformational change of Escherichia coli T-protein upon interacting with E. coli H-protein (EH), showing an important role for the N-terminal region of the T-protein in the interaction. To further investigate the T-protein catalysis, the wild type (ET) and mutants were subjected to limited proteolysis. ET was favorably cleaved at Lys(81), Lys(154), Lys(288), and Lys(360) by lysylendopeptidase and the cleavages at Lys(81) and Lys(288) were strongly prevented by EH. Although ET was highly resistant to trypsinolysis, the mutant with an N-terminal 7-residue deletion (ETDelta7) was quite susceptible and instantly cleaved at Arg(16) accompanied by the rapid degradation of the resulting C-terminal fragment, indicating that the cleavage at Arg(16) is the trigger for the C-terminal fragmentation. EH showed no protection from the N-terminal cleavage, although substantial protection from the C-terminal fragmentation was observed. The replacement of Leu(6) of ET with alanine resulted in a similar sensitivity to trypsin as ETDelta7. These results suggest that the N-terminal region of ET functions as a molecular "hasp" to hold ET in the compact form required for the proper association with EH. Leu(6) seems to play a central role in the hasp function. Interestingly, Lys(360) of ET was susceptible to proteolysis even after the stabilization of the entire molecule of ET by EH, indicating its location at the surface of the ET-EH complex. Together with the buried position of Lys(81) in the complex and previous results on folate binding sites, these results suggest the formation of a folate-binding cavity via the interaction of ET with EH. The polyglutamyl tail of the folate substrate may be inserted into the bosom of the cavity leaving the pteridine ring near the entrance of the cavity in the context of the catalytic reaction.


Assuntos
Aminoácido Oxirredutases , Proteínas de Transporte/fisiologia , Proteínas de Escherichia coli/química , Hidroximetil e Formil Transferases/química , Aminometiltransferase , Proteínas de Transporte/química , Proteína H do Complexo Glicina Descarboxilase , Glicina Desidrogenase (Descarboxilante) , Hidroximetil e Formil Transferases/metabolismo , Conformação Proteica , Tripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA