Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Med Klin Intensivmed Notfmed ; 118(Suppl 2): 86-92, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051381

RESUMO

Sepsis and septic shock, which are often caused by pneumonia, impact millions of people every year. Despite adequate antibiotic therapy, mortality remains high, up to 45% in septic shock, which is characterized by an inappropriate, excessive immune response of the host. Moreover, critical illness-related corticosteroid insufficiency often coexists. Against this background, several trials and meta-analyses evaluated corticosteroid therapy as adjuvant therapy with heterogeneous results. Indeed, before 2000, high-dosage, short courses of corticosteroid treatment resulted in no benefit on mortality and a higher rate of adverse events. After 2000, thanks to a deeper understanding of the pathophysiology, low-dosage with longer courses of treatment were tested. With this regimen, a faster decrease in inflammation and faster resolution of shock, with a low rate of mild adverse events, was demonstrated although no clear effect on mortality was shown. To date, guidelines on sepsis and septic shock and guidelines on severe community-acquired pneumonia suggest corticosteroid use in selected patients. Furthermore, by utilizing latent class analysis, phenotypes of sepsis patients who benefit the most from corticosteroid treatment were recently identified. Future research should be guided by a precision medicine approach to identify adequate dosage and duration of corticosteroid treatment for appropriate patients. This article is freely available.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Choque Séptico , Humanos , Choque Séptico/tratamento farmacológico , Corticosteroides/uso terapêutico , Corticosteroides/efeitos adversos , Sepse/tratamento farmacológico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Pneumonia/tratamento farmacológico
2.
Respir Res ; 24(1): 159, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37328754

RESUMO

BACKGROUND: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos Prospectivos , Estudos Retrospectivos , COVID-19/diagnóstico , COVID-19/genética , Estado Terminal , Biomarcadores , Unidades de Terapia Intensiva
3.
Crit Care ; 27(1): 239, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328874

RESUMO

BACKGROUND: Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). METHODS: Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. RESULTS: All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. CONCLUSIONS: In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Suínos , Animais , Síndrome do Desconforto Respiratório/diagnóstico , Pulmão/patologia , Pneumonia/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Mecânica Respiratória , Respiração Artificial/efeitos adversos
4.
Front Cell Infect Microbiol ; 13: 1142274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201119

RESUMO

Introduction: Biofilm production is an important yet currently overlooked aspect of diagnostic microbiology that has implications for antimicrobial stewardship. In this study, we aimed to validate and identify additional applications of the BioFilm Ring Test® (BRT) for Pseudomonas aeruginosa (PA) isolates from patients with bronchiectasis (BE). Materials and methods: Sputa were collected from BE patients who had at least one PA positive culture in the previous year. We processed the sputa to isolate both mucoid and non-mucoid PA, and determined their susceptibility pattern, mucA gene status, and presence of ciprofloxacin mutations in QRDR genes. The Biofilm production index (BPI) was obtained at 5 and 24 hours. Biofilms were imaged using Gram staining. Results: We collected 69 PA isolates, including 33 mucoid and 36 non-mucoid. A BPI value below 14.75 at 5 hours predicted the mucoid PA phenotype with 64% sensitivity and 72% specificity. Conclusion: Overall, our findings suggest that the fitness-cost associated with the mucoid phenotype or ciprofloxacin resistance is shown through a time-dependent BPI profile. The BRT has the potential to reveal biofilm features with clinical implications.


Assuntos
Gestão de Antimicrobianos , Infecções por Pseudomonas , Doenças Respiratórias , Humanos , Biofilmes , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Fenótipo , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
5.
Crit Care ; 27(1): 60, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788582

RESUMO

BACKGROUND: Pseudomonas aeruginosa pneumonia is commonly treated with systemic antibiotics to ensure adequate treatment of multidrug resistant (MDR) bacteria. However, intravenous (IV) antibiotics often achieve suboptimal pulmonary concentrations. We therefore aimed to evaluate the effect of inhaled amikacin (AMK) plus IV meropenem (MEM) on bactericidal efficacy in a swine model of monolateral MDR P. aeruginosa pneumonia. METHODS: We ventilated 18 pigs with monolateral MDR P. aeruginosa pneumonia for up to 102 h. At 24 h after the bacterial challenge, the animals were randomized to receive 72 h of treatment with either inhaled saline (control), IV MEM only, or IV-MEM plus inhaled AMK (MEM + AMK). We dosed IV MEM at 25 mg/kg every 8 h and inhaled AMK at 400 mg every 12 h. The primary outcomes were the P. aeruginosa burden and histopathological injury in lung tissue. Secondary outcomes included the P. aeruginosa burden in tracheal secretions and bronchoalveolar lavage fluid, the development of antibiotic resistance, the antibiotic distribution, and the levels of inflammatory markers. RESULTS: The median (25-75th percentile) P. aeruginosa lung burden for animals in the control, MEM only, and MEM + AMK groups was 2.91 (1.75-5.69), 0.72 (0.12-3.35), and 0.90 (0-4.55) log10 CFU/g (p = 0.009). Inhaled therapy had no effect on preventing dissemination compared to systemic monotherapy, but it did have significantly higher bactericidal efficacy in tracheal secretions only. Remarkably, the minimum inhibitory concentration of MEM increased to > 32 mg/L after 72-h exposure to monotherapy in 83% of animals, while the addition of AMK prevented this increase (p = 0.037). Adjunctive therapy also slightly affected interleukin-1ß downregulation. Despite finding high AMK concentrations in pulmonary samples, we found no paired differences in the epithelial lining fluid concentration between infected and non-infected lungs. Finally, a non-significant trend was observed for higher amikacin penetration in low-affected lung areas. CONCLUSIONS: In a swine model of monolateral MDR P. aeruginosa pneumonia, resistant to the inhaled AMK and susceptible to the IV antibiotic, the use of AMK as an adjuvant treatment offered no benefits for either the colonization of pulmonary tissue or the prevention of pathogen dissemination. However, inhaled AMK improved bacterial eradication in the proximal airways and hindered antibiotic resistance.


Assuntos
Pneumonia , Infecções por Pseudomonas , Animais , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Modelos Teóricos , Pneumonia/tratamento farmacológico , Pseudomonas aeruginosa , Infecções por Pseudomonas/tratamento farmacológico , Suínos
6.
Biomed Pharmacother ; 154: 113617, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058144

RESUMO

BACKGROUND: Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited understanding of the mechanistic pathways linked to post-acute pulmonary sequelae. AIM: To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. METHODS: Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≥60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. RESULTS: RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the prediction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. CONCLUSIONS: This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/complicações , COVID-19/genética , Humanos , Pulmão , Síndrome do Desconforto Respiratório/genética , SARS-CoV-2 , Sobreviventes , Tubulina (Proteína)
7.
Front Med (Lausanne) ; 9: 897990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911414

RESUMO

The long-term clinical management and evolution of a cohort of critical COVID-19 survivors have not been described in detail. We report a prospective observational study of COVID-19 patients admitted to the ICU between March and August 2020. The follow-up in a post-COVID consultation comprised symptoms, pulmonary function tests, the 6-minute walking test (6MWT), and chest computed tomography (CT). Additionally, questionnaires to evaluate the prevalence of post-COVID-19 syndrome were administered at 1 year. A total of 181 patients were admitted to the ICU during the study period. They were middle-aged (median [IQR] of 61 [52;67]) and male (66.9%), with a median ICU stay of 9 (5-24.2) days. 20% died in the hospital, and 39 were not able to be included. A cohort of 105 patients initiated the follow-up. At 1 year, 32.2% persisted with respiratory alterations and needed to continue the follow-up. Ten percent still had moderate/severe lung diffusion (DLCO) involvement (<60%), and 53.7% had a fibrotic pattern on CT. Moreover, patients had a mean (SD) number of symptoms of 5.7 ± 4.6, and 61.3% met the criteria for post-COVID syndrome at 1 year. During the follow-up, 46 patients were discharged, and 16 were transferred to other consultations. Other conditions, such as emphysema (21.6%), COPD (8.2%), severe neurocognitive disorders (4.1%), and lung cancer (1%) were identified. A high use of health care resources is observed in the first year. In conclusion, one-third of critically ill COVID-19 patients need to continue follow-up beyond 1 year, due to abnormalities on DLCO, chest CT, or persistent symptoms.

8.
Front Immunol ; 13: 942443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967328

RESUMO

Introduction: Bronchial aspirates (BAS) obtained during invasive mechanical ventilation (IMV) constitutes a useful tool for molecular phenotyping and decision making. Aim: To identify the proteomic determinants associated with disease pathogenesis, all-cause mortality and respiratory sequelae in BAS samples from critically ill patients with SARS-CoV-2-induced ARDS. Methods: Multicenter study including 74 critically ill patients with COVID-19 and non-COVID-19 ARDS. BAS were obtained by bronchoaspiration after IMV initiation. Three hundred sixty-four proteins were quantified using proximity extension assay (PEA) technology. Random forest models were used to assess predictor importance. Results: After adjusting for confounding factors, CST5, NADK, SRPK2 and TGF-α were differentially detected in COVID-19 and non-COVID-19 patients. In random forest models for COVID-19, CST5, DPP7, NADK, KYAT1 and TYMP showed the highest variable importance. In COVID-19 patients, reduced levels of ENTPD2 and PTN were observed in nonsurvivors of ICU stay, even after adjustment. AGR2, NQO2, IL-1α, OSM and TRAIL showed the strongest associations with in-ICU mortality and were used to construct a protein-based prediction model. Kaplan-Meier curves revealed a clear separation in mortality risk between subgroups of PTN, ENTPD2 and the prediction model. Cox regression models supported these findings. In survivors, the levels of FCRL1, NTF4 and THOP1 in BAS samples obtained during the ICU stay correlated with lung function (i.e., DLCO levels) 3 months after hospital discharge. Similarly, Flt3L and THOP1 levels were correlated with radiological features (i.e., TSS). These proteins are expressed in immune and nonimmune lung cells. Poor host response to viral infectivity and an inappropriate reparative mechanism seem to be linked with the pathogenesis of the disease and fatal outcomes, respectively. Conclusion: BAS proteomics identified novel factors associated with the pathology of SARS-CoV-2-induced ARDS and its adverse outcomes. BAS-based protein testing emerges as a novel tool for risk assessment in the ICU.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/complicações , Estado Terminal , Humanos , Mucoproteínas , Proteínas Oncogênicas , Proteínas Serina-Treonina Quinases , Proteômica , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2
9.
Intensive Care Med ; 48(7): 850-864, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35727348

RESUMO

PURPOSE: Although there is evidence supporting the benefits of corticosteroids in patients affected with severe coronavirus disease 2019 (COVID-19), there is little information related to their potential benefits or harm in some subgroups of patients admitted to the intensive care unit (ICU) with COVID-19. We aim to investigate to find candidate variables to guide personalized treatment with steroids in critically ill patients with COVID-19. METHODS: Multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish ICUs. The primary outcome was 90-day mortality. Subsequent analyses in clinically relevant subgroups by age, ICU baseline illness severity, organ damage, laboratory findings and mechanical ventilation were performed. High doses of corticosteroids (≥ 12 mg/day equivalent dexamethasone dose), early administration of corticosteroid treatment (< 7 days since symptom onset) and long term of corticosteroids (≥ 10 days) were also investigated. RESULTS: Between February 2020 and October 2021, 4226 patients were included. Of these, 3592 (85%) patients had received systemic corticosteroids during hospitalisation. In the propensity-adjusted multivariable analysis, the use of corticosteroids was protective for 90-day mortality in the overall population (HR 0.77 [0.65-0.92], p = 0.003) and in-hospital mortality (SHR 0.70 [0.58-0.84], p < 0.001). Significant effect modification was found after adjustment for covariates using propensity score for age (p = 0.001 interaction term), Sequential Organ Failure Assessment (SOFA) score (p = 0.014 interaction term), and mechanical ventilation (p = 0.001 interaction term). We observed a beneficial effect of corticosteroids on 90-day mortality in various patient subgroups, including those patients aged ≥ 60 years; those with higher baseline severity; and those receiving invasive mechanical ventilation at ICU admission. Early administration was associated with a higher risk of 90-day mortality in the overall population (HR 1.32 [1.14-1.53], p < 0.001). Long-term use was associated with a lower risk of 90-day mortality in the overall population (HR 0.71 [0.61-0.82], p < 0.001). No effect was found regarding the dosage of corticosteroids. Moreover, the use of corticosteroids was associated with an increased risk of nosocomial bacterial pneumonia and hyperglycaemia. CONCLUSION: Corticosteroid in ICU-admitted patients with COVID-19 may be administered based on age, severity, baseline inflammation, and invasive mechanical ventilation. Early administration since symptom onset may prove harmful.


Assuntos
Tratamento Farmacológico da COVID-19 , Corticosteroides/uso terapêutico , Estado Terminal/terapia , Humanos , Unidades de Terapia Intensiva , Medicina de Precisão , Respiração Artificial , Esteroides/uso terapêutico
10.
Emerg Microbes Infect ; 11(1): 1537-1549, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35603455

RESUMO

There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.Trial registration: ClinicalTrials.gov identifier: NCT04457505..Trial registration: ISRCTN.org identifier: ISRCTN16865246..


Assuntos
COVID-19 , MicroRNA Circulante , Síndrome do Desconforto Respiratório , COVID-19/complicações , MicroRNA Circulante/genética , Humanos , Pulmão , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Sobreviventes
14.
Crit Care ; 26(1): 18, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012662

RESUMO

QUESTION: We evaluated whether the time between first respiratory support and intubation of patients receiving invasive mechanical ventilation (IMV) due to COVID-19 was associated with mortality or pulmonary sequelae. MATERIALS AND METHODS: Prospective cohort of critical COVID-19 patients on IMV. Patients were classified as early intubation if they were intubated within the first 48 h from the first respiratory support or delayed intubation if they were intubated later. Surviving patients were evaluated after hospital discharge. RESULTS: We included 205 patients (140 with early IMV and 65 with delayed IMV). The median [p25;p75] age was 63 [56.0; 70.0] years, and 74.1% were male. The survival analysis showed a significant increase in the risk of mortality in the delayed group with an adjusted hazard ratio (HR) of 2.45 (95% CI 1.29-4.65). The continuous predictor time to IMV showed a nonlinear association with the risk of in-hospital mortality. A multivariate mortality model showed that delay of IMV was a factor associated with mortality (HR of 2.40; 95% CI 1.42-4.1). During follow-up, patients in the delayed group showed a worse DLCO (mean difference of - 10.77 (95% CI - 18.40 to - 3.15), with a greater number of affected lobes (+ 1.51 [95% CI 0.89-2.13]) and a greater TSS (+ 4.35 [95% CI 2.41-6.27]) in the chest CT scan. CONCLUSIONS: Among critically ill patients with COVID-19 who required IMV, the delay in intubation from the first respiratory support was associated with an increase in hospital mortality and worse pulmonary sequelae during follow-up.


Assuntos
COVID-19 , Estado Terminal , Idoso , Humanos , Intubação Intratraqueal , Masculino , Estudos Prospectivos , Respiração Artificial , SARS-CoV-2
16.
Lab Anim (NY) ; 50(11): 327-335, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675433

RESUMO

Streptococcus pneumoniae is the most common microbial cause of community-acquired pneumonia. Currently, there are no available models of severe pneumococcal pneumonia in mechanically ventilated animals to mimic clinical conditions of critically ill patients. We studied endogenous pulmonary flora in 4 healthy pigs and in an additional 10 pigs in which we intra-bronchially instilled S. pneumoniae serotype 19 A, characterized by its resistance to penicillin, macrolides and tetracyclines. The pigs underwent ventilation for 72 h. All pigs that were not challenged with S. pneumoniae completed the 72-h study, whereas 30% of infected pigs did not. At 24 h, we clinically confirmed pneumonia in the infected pigs; upon necropsy, we sampled lung tissue for microbiological/histological confirmation of pneumococcal pneumonia. In control pigs, Streptococcus suis and Staphylococcus aureus were the most commonly encountered pathogens, and their lung tissue mean ± s.e.m. concentration was 7.94 ± 20 c.f.u./g. In infected pigs, S. pneumoniae was found in the lungs of all pigs (mean ± s.e.m. pulmonary concentration of 1.26 × 105 ± 2 × 102 c.f.u./g). Bacteremia was found in 50% of infected pigs. Pneumococcal pneumonia was confirmed in all infected pigs at 24 h. Pneumonia was associated with thrombocytopenia, an increase in prothrombin time, cardiac output and vasopressor dependency index and a decrease in systemic vascular resistance. Upon necropsy, microbiological/histological pneumococcal pneumonia was confirmed in 8 of 10 pigs. We have therefore developed a novel model of penicillin- and macrolide-resistant pneumococcal pneumonia in mechanically ventilated pigs with bacteremia and severe hemodynamic compromise. The model could prove valuable for appraising the pathogenesis of pneumococcal pneumonia, the effects associated with macrolide resistance and the outcomes related to the use of new diagnostic strategies and antibiotic or complementary therapies.


Assuntos
Pneumonia Pneumocócica , Animais , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Humanos , Macrolídeos/farmacologia , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/veterinária , Streptococcus pneumoniae , Suínos
17.
Front Med (Lausanne) ; 8: 738086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568393

RESUMO

Background: In a disease that has only existed for 18 months, it is difficult to be fully informed of the long-term sequelae of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Evidence is growing that most organ systems can be affected by the virus, causing severe disabilities in survivors. The extent of the aftermath will declare itself over the next 5-10 years, but it is likely to be substantial with profound socio-economic impact on society. Methods: This is an international multi-center, prospective long-term follow-up study of patients who developed severe coronavirus disease-2019 (COVID-19) and were admitted to Intensive Care Units (ICUs). The study will be conducted at international tertiary hospitals. Patients will be monitored from time of ICU discharge up to 24 months. Information will be collected on demographics, co-existing illnesses before ICU admission, severity of illness during ICU admission and post-ICU quality of life as well as organ dysfunction and recovery. Statistical analysis will consist of patient trajectories over time for the key variables of quality of life and organ function. Using latent class analysis, we will determine if there are distinct patterns of patients in terms of recovery. Multivariable regression analyses will be used to examine associations between baseline characteristics and severity variables upon admission and discharge in the ICU, and how these impact outcomes at all follow-up time points up to 2 years. Ethics and Dissemination: The core study team and local principal investigators will ensure that the study adheres to all relevant national and local regulations, and that the necessary approvals are in place before a site may enroll patients. Clinical Trial Registration:anzctr.org.au: ACTRN12620000799954.

18.
Transl Res ; 236: 147-159, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34048985

RESUMO

We aimed to examine the circulating microRNA (miRNA) profile of hospitalized COVID-19 patients and evaluate its potential as a source of biomarkers for the management of the disease. This was an observational and multicenter study that included 84 patients with a positive nasopharyngeal swab Polymerase chain reaction (PCR) test for SARS-CoV-2 recruited during the first pandemic wave in Spain (March-June 2020). Patients were stratified according to disease severity: hospitalized patients admitted to the clinical wards without requiring critical care and patients admitted to the intensive care unit (ICU). An additional study was completed including ICU nonsurvivors and survivors. Plasma miRNA profiling was performed using reverse transcription polymerase quantitative chain reaction (RT-qPCR). Predictive models were constructed using least absolute shrinkage and selection operator (LASSO) regression. Ten circulating miRNAs were dysregulated in ICU patients compared to ward patients. LASSO analysis identified a signature of three miRNAs (miR-148a-3p, miR-451a and miR-486-5p) that distinguishes between ICU and ward patients [AUC (95% CI) = 0.89 (0.81-0.97)]. Among critically ill patients, six miRNAs were downregulated between nonsurvivors and survivors. A signature based on two miRNAs (miR-192-5p and miR-323a-3p) differentiated ICU nonsurvivors from survivors [AUC (95% CI) = 0.80 (0.64-0.96)]. The discriminatory potential of the signature was higher than that observed for laboratory parameters such as leukocyte counts, C-reactive protein (CRP) or D-dimer [maximum AUC (95% CI) for these variables = 0.73 (0.55-0.92)]. miRNA levels were correlated with the duration of ICU stay. Specific circulating miRNA profiles are associated with the severity of COVID-19. Plasma miRNA signatures emerge as a novel tool to assist in the early prediction of vital status deterioration among ICU patients.


Assuntos
COVID-19/sangue , COVID-19/genética , MicroRNA Circulante/sangue , Hospitalização , Índice de Gravidade de Doença , Idoso , Biomarcadores/sangue , COVID-19/virologia , Estado Terminal , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , SARS-CoV-2/fisiologia
19.
Chest ; 160(1): 187-198, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33676998

RESUMO

BACKGROUND: More than 20% of hospitalized patients with COVID-19 demonstrate ARDS requiring ICU admission. The long-term respiratory sequelae in such patients remain unclear. RESEARCH QUESTION: What are the major long-term pulmonary sequelae in critical patients who survive COVID-19? STUDY DESIGN AND METHODS: Consecutive patients with COVID-19 requiring ICU admission were recruited and evaluated 3 months after hospitalization discharge. The follow-up comprised symptom and quality of life, anxiety and depression questionnaires, pulmonary function tests, exercise test (6-min walking test [6MWT]), and chest CT imaging. RESULTS: One hundred twenty-five patients admitted to the ICU with ARDS secondary to COVID-19 were recruited between March and June 2020. At the 3-month follow-up, 62 patients were available for pulmonary evaluation. The most frequent symptoms were dyspnea (46.7%) and cough (34.4%). Eighty-two percent of patients showed a lung diffusing capacity of less than 80%. The median distance in the 6MWT was 400 m (interquartile range, 362-440 m). CT scans showed abnormal results in 70.2% of patients, demonstrating reticular lesions in 49.1% and fibrotic patterns in 21.1%. Patients with more severe alterations on chest CT scan showed worse pulmonary function and presented more degrees of desaturation in the 6MWT. Factors associated with the severity of lung damage on chest CT scan were age and length of invasive mechanical ventilation during the ICU stay. INTERPRETATION: Three months after hospital discharge, pulmonary structural abnormalities and functional impairment are highly prevalent in patients with ARDS secondary to COVID-19 who required an ICU stay. Pulmonary evaluation should be considered for all critical COVID-19 survivors 3 months after discharge.


Assuntos
COVID-19 , Efeitos Adversos de Longa Duração , Pulmão/diagnóstico por imagem , Qualidade de Vida , Testes de Função Respiratória/métodos , Sobreviventes , Tomografia Computadorizada por Raios X/métodos , Assistência ao Convalescente/métodos , Assistência ao Convalescente/estatística & dados numéricos , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/terapia , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Efeitos Adversos de Longa Duração/diagnóstico , Efeitos Adversos de Longa Duração/epidemiologia , Efeitos Adversos de Longa Duração/etiologia , Efeitos Adversos de Longa Duração/psicologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Alta do Paciente/estatística & dados numéricos , Prevalência , SARS-CoV-2 , Espanha/epidemiologia , Sobreviventes/psicologia , Sobreviventes/estatística & dados numéricos , Teste de Caminhada/métodos , Teste de Caminhada/estatística & dados numéricos
20.
Front Med (Lausanne) ; 8: 756517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186962

RESUMO

BACKGROUND: The pathophysiology of COVID-19-related critical illness is not completely understood. Here, we analyzed the microRNA (miRNA) profile of bronchial aspirate (BAS) samples from COVID-19 and non-COVID-19 patients admitted to the ICU to identify prognostic biomarkers of fatal outcomes and to define molecular pathways involved in the disease and adverse events. METHODS: Two patient populations were included (n = 89): (i) a study population composed of critically ill COVID-19 and non-COVID-19 patients; (ii) a prospective study cohort composed of COVID-19 survivors and non-survivors among patients assisted by invasive mechanical ventilation (IMV). BAS samples were obtained by bronchoaspiration during the ICU stay. The miRNA profile was analyzed using RT-qPCR. Detailed biomarker and bioinformatics analyses were performed. RESULTS: The deregulation in five miRNA ratios (miR-122-5p/miR-199a-5p, miR-125a-5p/miR-133a-3p, miR-155-5p/miR-486-5p, miR-214-3p/miR-222-3p, and miR-221-3p/miR-27a-3p) was observed when COVID-19 and non-COVID-19 patients were compared. In addition, five miRNA ratios segregated between ICU survivors and nonsurvivors (miR-1-3p/miR-124-3p, miR-125b-5p/miR-34a-5p, miR-126-3p/miR-16-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). Through multivariable analysis, we constructed a miRNA ratio-based prediction model for ICU mortality that optimized the best combination of miRNA ratios (miR-125b-5p/miR-34a-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). The model (AUC 0.85) and the miR-199a-5p/miR-9-5p ratio (AUC 0.80) showed an optimal discrimination value and outperformed the best clinical predictor for ICU mortality (days from first symptoms to IMV initiation, AUC 0.73). The survival analysis confirmed the usefulness of the miRNA ratio model and the individual ratio to identify patients at high risk of fatal outcomes following IMV initiation. Functional enrichment analyses identified pathological mechanisms implicated in fibrosis, coagulation, viral infections, immune responses and inflammation. CONCLUSIONS: COVID-19 induces a specific miRNA signature in BAS from critically ill patients. In addition, specific miRNA ratios in BAS samples hold individual and collective potential to improve risk-based patient stratification following IMV initiation in COVID-19-related critical illness. The biological role of the host miRNA profiles may allow a better understanding of the different pathological axes of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...