Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1273: 341451, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423649

RESUMO

Microfluidic paper analytical devices (µPADs) are among the most promising platforms for heavy metal ion analysis. On the other hand, achieving simple and highly sensitive analysis of µPADs is challenging. In this study, we developed a simple enrichment method for sensitive multi-ion detection utilizing water-insoluble organic nanocrystals accumulated on µPAD. By combining the enrichment method with multivariate data analysis, three metal ion concentrations in the ion mixtures were simultaneously quantified with high sensitivity owing to the sensitive responses of the organic nanocrystals. In this work, we successfully quantified Zn2+, Cu2+, and Ni2+ at 20 ng L-1 in the mixed ion solution using only two dye indicators with a larger sensitivity improvement than those reported in previous studies. Interference studies revealed possibilities for a practical application in real sample analysis. This developed approach also can be used for other analytes.

2.
Anal Sci ; 37(1): 61-68, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32713905

RESUMO

Aerosol droplets play a critical role in the development of weather patterns, yet are notoriously difficult to analyze because of their small size, transient nature and potentially complex composition. As a result, there has been a surge in recent years in the development of analysis techniques aimed at the study of aerosol droplets, namely of their surface tension properties, which are thought to play a great role in aerosol/cloud growth and subsequently having an impact on the resulting weather patterns. To capture the state of the field at this key time, we have collected and described some of the most relevant and influential studies, with a focus on those that have had the most impact. This review will present and describe the most used analytical techniques for studying the surface tension of micrometer-sized aqueous droplets, with a focus on historical trends and how the current techniques are posed to revolutionize the field.

3.
Nat Commun ; 11(1): 4201, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826920

RESUMO

The need for active and stable oxidation catalysts is driven by the demands in production of valuable chemicals, remediation of hydrocarbon pollutants and energy sustainability. Traditional approaches focus on oxygen-activating oxides as support which provides the oxygen activation at the catalyst-support peripheral interface. Here we report a new approach to oxidation catalysts for total oxidation of hydrocarbons (e.g., propane) by surface oxygenation of platinum (Pt)-alloyed multicomponent nanoparticles (e.g., platinum-nickel cobalt (Pt-NiCo)). The in-situ/operando time-resolved studies, including high-energy synchrotron X-ray diffraction and diffuse reflectance infrared Fourier transform spectroscopy, demonstrate the formation of oxygenated Pt-NiOCoO surface layer and disordered ternary alloy core. The results reveal largely-irregular oscillatory kinetics associated with the dynamic lattice expansion/shrinking, ordering/disordering, and formation of surface-oxygenated sites and intermediates. The catalytic synergy is responsible for reduction of the oxidation temperature by ~100 °C and the high stability under 800 °C hydrothermal aging in comparison with Pt, and may represent a paradigm shift in the design of self-supported catalysts.

4.
Adv Mater ; 32(36): e2002171, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705728

RESUMO

Fibrous materials serve as an intriguing class of 3D materials to meet the growing demands for flexible, foldable, biocompatible, biodegradable, disposable, inexpensive, and wearable sensors and the rising desires for higher sensitivity, greater miniaturization, lower cost, and better wearability. The use of such materials for the creation of a fibrous sensor substrate that interfaces with a sensing film in 3D with the transducing electronics is however difficult by conventional photolithographic methods. Here, a highly effective pathway featuring surface-mediated interconnection (SMI) of metal nanoclusters (NCs) and nanoparticles (NPs) in fibrous materials at ambient conditions is demonstrated for fabricating fibrous sensor substrates or platforms. Bimodally distributed gold-copper alloy NCs and NPs are used as a model system to demonstrate the semiconductive-to-metallic conductivity transition, quantized capacitive charging, and anisotropic conductivity characteristics. Upon coupling SMI of NCs/NPs as electrically conductive microelectrodes and surface-mediated assembly (SMA) of the NCs/NPs as chemically sensitive interfaces, the resulting fibrous chemiresistors function as sensitive and selective sensors for gaseous and vaporous analytes. This new SMI-SMA strategy has significant implications for manufacturing high-performance fibrous platforms to meet the growing demands of the advanced multifunctional sensors and biosensors.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Eletrodos , Propriedades de Superfície
5.
Nanoscale ; 10(8): 3849-3862, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29417115

RESUMO

Nanoscale alloying constitutes an increasingly-important pathway for design of catalysts for a wide range of technologically important reactions. A key challenge is the ability to control the surface catalytic sites in terms of the alloying composition, thermochemical treatment and phase in correlation with the catalytic properties. Herein we show novel findings of the nanoscale evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys by probing CO adsorption and oxidation using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique. In addition to the bimetallic composition and the support, the surface sites are shown to depend strongly on the thermochemical treatment condition, demonstrating that the ratio of three-fold vs. bridge or atop Pd sites is greatly reduced by thermochemical treatment under hydrogen in comparison with that under oxygen. This type of surface reconstruction is further supported by synchrotron high-energy X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis of the nanoalloy structure, revealing an enhanced degree of random alloying for the catalysts thermochemically treated under hydrogen. The nanoscale alloying and surface site evolution characteristics were found to correlate strongly with the catalytic activity of CO oxidation. These findings have significant implications for the nanoalloy-based design of catalytic synergy.

6.
Langmuir ; 33(7): 1687-1694, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28112953

RESUMO

Combining Au and Fe into a single nanoparticle is an attractive way to engineer a system possessing both plasmonic and magnetic properties simultaneously. However, the formation of the AuFe alloy is challenging because of the wide miscibility gap for these elements. In this study, we synthesized AuFePt ternary alloy nanoparticles as an alternative to AuFe alloy nanoparticles, where Pt is used as a mediator that facilitates alloying between Au and Fe in order to form ternary alloy nanoparticles. The relationship among composition, structure, and function is investigated and it was found that at an optimized composition (Au52Fe30Pt18), ternary alloy NPs exhibit both magnetic and plasmonic properties simultaneously. The plasmonic properties are investigated in detail using a theoretical Mie model, and we found that it is governed by the dielectric constant of the resulting materials.

7.
Nanoscale ; 8(24): 12152-61, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26892588

RESUMO

Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g(-1). The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Hipertermia Induzida , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio
8.
Langmuir ; 31(41): 11158-63, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26444621

RESUMO

This report describes findings of an investigation of harvesting nanocatalytic heat localized in a nanoalloy catalyst layer as a heat source in a nanocomposite thin film thermoelectric device for thermoelectric energy conversion. This device couples a heterostructured copper-zinc sulfide nanocomposite for thermoelectrics and low-temperature combustion of methanol fuels over a platinum-cobalt nanoalloy catalyst for producing heat localized in the nanocatalyst layer. The possibility of tuning nanocatalytic heat in the nanocatalyst and thin film thermoelectric properties by compositions points to a promising pathway in thermoelectric energy conversion.

9.
Nanoscale ; 7(45): 18936-48, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26404795

RESUMO

The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo phase segregation into distinct chemically-ordered (B2-type) and disordered (fcc-type) domains. This finding is significant since it provides a rational basis for streamlining the design and preparation of Pd-based nanoalloy catalysts in terms of atomic structure and phase state.

10.
Langmuir ; 31(7): 2228-36, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25614919

RESUMO

Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected.


Assuntos
Cobalto/química , Transferência Ressonante de Energia de Fluorescência , Compostos de Ferro/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Prata/química , Campos Magnéticos , Polilisina/química
11.
Nanomaterials (Basel) ; 5(4): 1820-1830, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-28347097

RESUMO

In this report, copper iron sulfide nanoparticles with various composition were synthesized by a thermolysis based wet chemical method. These inherently sustainable nanoparticles were then fully characterized in terms of composition, structure, and morphology, as well as for suitability as a thermoelectric material. The merits of the material preparation include a straightforward bulk material formation where particles do not require any specialized treatment, such as spark plasma sintering or thermal heating. The Seebeck coefficient of the materials reveals P-type conductivity with a maximum value of 203 µV/K. The results give insight into how to design and create a new class of sustainable nanoparticle material for thermoelectric applications.

12.
Chemphyschem ; 14(14): 3278-83, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23913505

RESUMO

Plasmonic Au and magnetic Fe are coupled into uniform Au@Fe core-shell nanoparticles (NPs) to confirm that electron transfer occurred from the Au core to the Fe shell. Au NPs synthesized in aqueous medium are used as seeds and coated with an Fe shell. The resulting Au@Fe NPs are characterized by using various analytical techniques. X-ray photoelectron spectroscopy and superconducting quantum interference device measurements reveal that the Fe shell of the Au@Fe NPs mainly consists of paramagnetic Wüstite with a thin surface oxide layer consisting of maghemite or magnetite. Electron transfer from the Au core to the Fe shell effectively suppresses iron oxidation from Fe(2+) to Fe(3+) near the interface between the Au and the Fe. The charge-transfer-induced electronic modification technique enables us to control the degree of iron oxidation and the resulting magnetic properties.

13.
Langmuir ; 29(29): 9249-58, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23841935

RESUMO

The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.


Assuntos
Ligas/química , Etanol/química , Nanoestruturas/química , Paládio/química , Catálise , Cobalto/química , Cobre/química , Eletroquímica , Gases/química , Concentração de Íons de Hidrogênio , Oxirredução , Propriedades de Superfície
14.
Sensors (Basel) ; 13(6): 7813-26, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23778193

RESUMO

Platinum coated by silver nanoparticles was synthesized, which displays a unique structure where polycrystalline platinum particles are completely encapsulated in continuous monocrystalline silver shells. These particles display accentuated electronic properties, where the silver shells gain electron density from the platinum cores, imparting enhanced properties such as oxidation resistance. This electron transfer phenomenon is highly interfacial in nature, and the degree of electron transfer decreases as the thickness of silver shell increases. The nanoparticle structure and electronic properties are studied and the implication to creating sensing probes with enhanced robustness, sensitivity and controllable plasmonic properties is discussed.

15.
J Mater Chem B ; 1(34): 4320-4330, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261029

RESUMO

The ability to harness the nanoscale structural properties is essential for the exploration of functional properties of nanomaterials. This report demonstrates a novel strategy exploring bifunctional nanoparticles for spectroscopic detection and magnetic intervention of DNA assembly, disassembly, and enzyme cutting processes in a solution phase. In contrast to existing single-function based approaches, this strategy exploits magnetic MnZn ferrite nanoparticles decorated with gold or silver on the surface to retain adequate magnetization while producing sufficient plasmonic resonance features to impart surface-enhanced Raman scattering (SERS) functions. The decoration of MnZn ferrite nanoparticles with Au or Ag (MZF/Au or MZF/Ag) was achieved by thermally activated deposition of Au or Ag atoms/nanoparticles on MZF nanoparticles. Upon interparticle double-stranded DNA linkage of the MZF/Au (or MZF/Ag) nanoparticles with gold nanoparticles labeled with a Raman reporter, the resulting interparticle "hot spots" are shown to enable real time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, where the magnetic component provides an effective means for intervention of the biomolecular processes in the solution. The unique bifunctional combination of the SERS "hot spots" and the magnetic separation capability serves as the first example of bifunctional nanoprobes for biomolecular recognition and intervention.

16.
Adv Colloid Interface Sci ; 185-186: 14-33, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22999044

RESUMO

This review article presents the collected recent findings and advancements in understanding and manipulating the electronic properties of the Au/Ag NP system from the standpoint of controlling the characteristics of heterostructured core-shell NPs. The discovery of the electronic transfer effect through analysis of both Ag-Au and Au-Ag type NPs inspired the analysis of the resulting enhanced properties. First, the background on the synthesis and characterization of Ag, Au, Ag-Au, Au-Ag and Au-Ag-Au NPs, which will be used as a basis for studying the electronic transfer and stability properties is presented. Next, Mie Theory is used to inspect the optical properties of the Ag-Au NPs, revealing subtle structural characteristics in these probes, which has implications to the plasmonic properties. This is followed by the inspection of the electronic properties of the Au-Ag NPs primarily through XPS and XANES analysis, revealing the origins of the electronic transfer phenomenon. The unique electronic properties are then revealed to result in improved particle stability in terms of susceptibility to oxidation. Finally, an assessment of the resulting enhanced plasmonic sensing properties is discussed. The results are presented in terms of synthesis technique, material characterization, understanding of the electronic properties and manipulation of those properties to create Au-Ag NPs with enhanced resistance to oxidation and galvanic replacement.

17.
Nanotechnology ; 23(30): 305404, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22781275

RESUMO

The understanding of nanoscale alloying or the phase segregation effect of alloy nanoparticles on the catalytic properties is important for a rational design of the desired catalysts for a specific reaction. This paper describes findings of an investigation into this type of structural effect for carbon-supported bimetallic gold-platinum nanoparticles as cathode catalysts in a rechargeable lithium-oxygen battery. The nanoscale structural characteristics in terms of size, alloying and phase segregation were shown to affect the catalytic properties of the catalysts in the Li-O(2) battery. In addition to the composition effect, the catalysts with a fully alloyed phase structure were found to exhibit a smaller discharge-charge voltage difference and a higher discharge capacity than those with a partial phase segregation structure. This finding is significant for the design of alloy nanoparticles as air cathode catalysts in rechargeable lithium-air batteries, demonstrating the importance of the control of the nanoscale composition and phase properties.

18.
Nanotechnology ; 23(24): 245704, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22641370

RESUMO

Silver nanoparticles are notoriously susceptible to oxidation, yet gold nanoparticles coated in silver exhibit a unique electronic interaction that occurs at the interface of the two metals, leading to enhanced stability properties for the silver shell. In order to probe the phenomenon, the stability of gold nanoparticles coated by silver was studied in the presence of various chloride-containing electrolytes. It was found that a critical silver shell thickness of approximately 1 nm exists that cannot be oxidatively etched from the particle surface: this is in contrast to the observation of complete oxidative etching for monometallic silver nanoparticles. The results are discussed in terms of particle composition, structure and morphology before and after exposing the particles to the electrolytes. Raman analysis of the reporter molecule 3-amino-1,2,4-triazole-5-thiol adsorbed on the particle surface illustrates the feasibility of using gold coated by silver nanoparticle probes in sensing applications that require the presence of high levels of salt. The results provide insight into the manipulation of the electronic and stability properties for gold- and silver-based nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Cloreto de Cálcio/química , Técnicas Eletroquímicas , Ácido Clorídrico/química , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia/métodos , Tamanho da Partícula , Cloreto de Sódio/química , Análise Espectral
19.
Anal Chem ; 84(1): 26-9, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22148593

RESUMO

While the importance of microRNAs (miRNAs) in cancer treatment or manipulation of genetic expression has been increasingly recognized for developing miRNA-based therapies, the controlled delivery of miRNAs into specific cells constitutes a challenging task. This report describes preliminary findings from an investigation of the conjugation of gold nanoparticles with miRNAs (miRNA-AuNPs) and their cell transfection. The immobilization of miRNAs on the AuNPs was detected, and the surface stability was substantiated by gel electrophoresis assessment of the highly charged characteristics of miRNA-AuNPs and their surface-exchange inactivity with a highly charged surfactant. The miRNA-AuNPs were tested in cell transfection using multiple myeloma cells, demonstrating efficient knockdown in the functional luciferase assay. The findings have important implications for understanding the mechanistic details of cell transfection involving miRNA-conjugated nanoparticles as biosensing or targeting probes.


Assuntos
Ouro/química , Nanopartículas Metálicas , MicroRNAs/química , Transfecção , Microscopia Confocal
20.
Phys Chem Chem Phys ; 13(20): 9335-43, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21479291

RESUMO

The formation mechanism of Ag nanoparticles (NPs) synthesized with a wet-chemical reduction method using sodium acrylate as a dual reducing and capping agent was investigated with various analytical techniques. The time course of the state of the reaction solution was investigated using UV-vis and XAFS spectroscopies which showed that the NP formation rate increased with increasing concentration of sodium hydroxide (NaOH). The detailed kinetic analyses reveal that both the reduction rate of Ag ions and the nucleation rate of Ag NPs are dramatically increased with increasing NaOH concentration. XANES analyses imply that another reaction pathway via alternative Ag(+) species, such as Ag(OH)(x), was developed in the presence of NaOH. Consequently, NaOH is found to play an important role not only in creating specific intermediates in the reduction of Ag(+) to Ag(0), but also in accelerating the reduction and nucleation rates by enhancing the oxidation of sodium acrylate, thereby increasing the rate of formation of the Ag NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...