Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 9547, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664546

RESUMO

Temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females allows to investigate the mechanisms underlying phenotypic plasticity. Thermal plasticity of pigmentation is due to modulation of tan and yellow expression, encoding pigmentation enzymes. Furthermore, modulation of tan expression by temperature is correlated to the variation of the active histone mark H3K4me3 on its promoter. Here, we test the role of the DotCom complex, which methylates H3K79, another active mark, in establishment and plasticity of pigmentation. We show that several components of the DotCom complex are involved in the establishment of abdominal pigmentation. In particular, Grappa, the catalytic unit of this complex, plays opposite roles on pigmentation at distinct developmental stages. Indeed, its down-regulation from larval L2 to L3 stages increases female adult pigmentation, whereas its down-regulation during the second half of the pupal stage decreases adult pigmentation. These opposite effects are correlated to the regulation of distinct pigmentation genes by Grappa: yellow repression for the early role and tan activation for the late one. Lastly, reaction norms measuring pigmentation along temperature in mutants for subunits of the DotCom complex reveal that this complex is not only involved in the establishment of female abdominal pigmentation but also in its plasticity.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Histonas , Pigmentação , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Pigmentação/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Temperatura , Regulação da Expressão Gênica no Desenvolvimento , Abdome
3.
PLoS One ; 17(8): e0273198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35981051

RESUMO

The ribosomal protein uL11 is located at the basis of the ribosome P-stalk and plays a paramount role in translational efficiency. In addition, no mutant for uL11 is available suggesting that this gene is haplo-insufficient as many other Ribosomal Protein Genes (RPGs). We have previously shown that overexpression of Drosophila melanogaster uL11 enhances the transcription of many RPGs and Ribosomal Biogenesis genes (RiBis) suggesting that uL11 might globally regulate the level of translation through its transcriptional activity. Moreover, uL11 trimethylated on lysine 3 (uL11K3me3) interacts with the chromodomain of the Enhancer of Polycomb and Trithorax Corto, and both proteins co-localize with RNA Polymerase II at many sites on polytene chromosomes. These data have led to the hypothesis that the N-terminal end of uL11, and more particularly the trimethylation of lysine 3, supports the extra-ribosomal activity of uL11 in transcription. To address this question, we mutated the lysine 3 codon using a CRISPR/Cas9 strategy and obtained several lysine 3 mutants. We describe here the first mutants of D. melanogaster uL11. Unexpectedly, the uL11K3A mutant, in which the lysine 3 codon is replaced by an alanine, displays a genuine Minute phenotype known to be characteristic of RPG deletions (longer development, low fertility, high lethality, thin and short bristles) whereas the uL11K3Y mutant, in which the lysine 3 codon is replaced by a tyrosine, is unaffected. In agreement, the rate of translation decreases in uL11K3A but not in uL11K3Y. Co-immunoprecipitation experiments show that the interaction between uL11 and the Corto chromodomain is impaired by both mutations. However, Histone Association Assays indicate that the mutant proteins still bind chromatin. RNA-seq analyses from wing imaginal discs show that Corto represses RPG expression whereas very few genes are deregulated in uL11 mutants. We propose that Corto, by repressing RPG expression, ensures that all ribosomal proteins are present at the correct stoichiometry, and that uL11 fine-tunes its transcriptional regulation of RPGs.


Assuntos
Proteínas de Drosophila , Lisina , Proteínas Ribossômicas , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lisina/genética , Lisina/metabolismo , Mutação , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ativação Transcricional/genética
4.
Dev Cell ; 50(6): 780-792.e7, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31447264

RESUMO

Size trade-offs of visual versus olfactory organs is a pervasive feature of animal evolution. This could result from genetic or functional constraints. We demonstrate that head sensory organ size trade-offs in Drosophila are genetically encoded and arise through differential subdivision of the head primordium into visual versus non-visual fields. We discover that changes in the temporal regulation of the highly conserved eyeless/Pax6 gene expression during development is a conserved mechanism for sensory trade-offs within and between Drosophila species. We identify a natural single nucleotide polymorphism in the cis-regulatory region of eyeless in a binding site of its repressor Cut that is sufficient to alter its temporal regulation and eye size. Because eyeless/Pax6 is a conserved regulator of head sensory placode subdivision, we propose that its temporal regulation is key to define the relative size of head sensory organs.


Assuntos
Evolução Biológica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Órgãos dos Sentidos/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos/genética , Olho/anatomia & histologia , Olho/metabolismo , Feminino , Geografia , Cabeça , Nucleotídeos/genética , Tamanho do Órgão/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
5.
PLoS Genet ; 14(8): e1007573, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30067846

RESUMO

Drosophila body pigmentation has emerged as a major Evo-Devo model. Using two Drosophila melanogaster lines, Dark and Pale, selected from a natural population, we analyse here the interaction between genetic variation and environmental factors to produce this complex trait. Indeed, pigmentation varies with genotype in natural populations and is sensitive to temperature during development. We demonstrate that the bric à brac (bab) genes, that are differentially expressed between the two lines and whose expression levels vary with temperature, participate in the pigmentation difference between the Dark and Pale lines. The two lines differ in a bab regulatory sequence, the dimorphic element (called here bDE). Both bDE alleles are temperature-sensitive, but the activity of the bDE allele from the Dark line is lower than that of the bDE allele from the Pale line. Our results suggest that this difference could partly be due to differential regulation by AbdB. bab has been previously reported to be a repressor of abdominal pigmentation. We show here that one of its targets in this process is the pigmentation gene tan (t), regulated via the tan abdominal enhancer (t_MSE). Furthermore, t expression is strongly modulated by temperature in the two lines. Thus, temperature sensitivity of t expression is at least partly a consequence of bab thermal transcriptional plasticity. We therefore propose that a gene regulatory network integrating both genetic variation and temperature sensitivity modulates female abdominal pigmentation. Interestingly, both bDE and t_MSE were previously shown to have been recurrently involved in abdominal pigmentation evolution in drosophilids. We propose that the environmental sensitivity of these enhancers has turned them into evolutionary hotspots.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Pigmentação/genética , Fatores de Transcrição/fisiologia , Alelos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Variação Genética , Técnicas de Genotipagem , Análise de Sequência de DNA , Temperatura , Fatores de Transcrição/genética
6.
Sci Rep ; 8(1): 5328, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593305

RESUMO

In their seminal paper published in 1979, Gould and Lewontin argued that some traits arise as by-products of the development of other structures and not for direct utility in themselves. We show here that this applies to the trident, a pigmentation pattern observed on the thorax of Drosophila melanogaster. Using reporter constructs, we show that the expression domain of several genes encoding pigmentation enzymes follows the trident shape. This domain is complementary to the expression pattern of stripe (sr), which encodes an essential transcription factor specifying flight muscle attachment sites. We demonstrate that sr limits the expression of these pigmentation enzyme genes to the trident by repressing them in its own expression domain, i.e. at the flight muscle attachment sites. We give evidence that repression of not only yellow but also other pigmentation genes, notably tan, is involved in the trident shape. The flight muscle attachment sites and sr expression patterns are remarkably conserved in dipterans reflecting the essential role of sr. Our data suggest that the trident is a by-product of flight muscle attachment site patterning that arose when sr was co-opted for the regulation of pigmentation enzyme coding genes.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Muscular , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Melaninas/biossíntese , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Pigmentação/genética , Fatores de Transcrição/metabolismo
7.
Sci Rep ; 7: 43370, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230190

RESUMO

Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in different environments. We use the temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females as a model to analyse the effect of the environment on development. We reported previously that thermal plasticity of abdominal pigmentation in females involves the pigmentation gene tan (t). However, the expression of the pigmentation gene yellow (y) was also modulated by temperature in the abdominal epidermis of pharate females. We investigate here the contribution of y to female abdominal pigmentation plasticity. First, we show that y is required for the production of black Dopamine-melanin. Then, using in situ hybridization, we show that the expression of y is strongly modulated by temperature in the abdominal epidermis of pharate females but not in bristles. Interestingly, these two expression patterns are known to be controlled by distinct enhancers. However, the activity of the y-wing-body epidermal enhancer only partially mediates the effect of temperature suggesting that additional regulatory sequences are involved. In addition, we show that y and t co-expression is needed to induce strong black pigmentation indicating that y contributes to female abdominal pigmentation plasticity.


Assuntos
Proteínas de Drosophila/biossíntese , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Pigmentação , Adaptação Fisiológica , Animais , Drosophila melanogaster/efeitos da radiação , Exposição Ambiental , Feminino , Temperatura
8.
PLoS Genet ; 12(8): e1006218, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27508387

RESUMO

Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Interação Gene-Ambiente , Seleção Genética/genética , Animais , Cromatina/genética , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/fisiologia , Feminino , Regulação da Expressão Gênica , Genótipo , Histona-Lisina N-Metiltransferase/genética , Melaninas/biossíntese , Fenótipo , Pigmentação/genética , Regiões Promotoras Genéticas , Temperatura
9.
PLoS One ; 8(10): e77592, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204884

RESUMO

Drosophila wings mainly consist of two cell types, vein and intervein cells. Acquisition of either fate depends on specific expression of genes that are controlled by several signaling pathways. The nuclear mechanisms that translate signaling into regulation of gene expression are not completely understood, but they involve chromatin factors from the Trithorax (TrxG) and Enhancers of Trithorax and Polycomb (ETP) families. One of these is the ETP Corto that participates in intervein fate through interaction with the Drosophila EGF Receptor--MAP kinase ERK pathway. Precise mechanisms and molecular targets of Corto in this process are not known. We show here that Corto interacts with the Elongin transcription elongation complex. This complex, that consists of three subunits (Elongin A, B, C), increases RNA polymerase II elongation rate in vitro by suppressing transient pausing. Analysis of phenotypes induced by EloA, B, or C deregulation as well as genetic interactions suggest that the Elongin complex might participate in vein vs intervein specification, and antagonizes corto as well as several TrxG genes in this process. Chromatin immunoprecipitation experiments indicate that Elongin C and Corto bind the vein-promoting gene rhomboid in wing imaginal discs. We propose that Corto and the Elongin complex participate together in vein vs intervein fate, possibly through tissue-specific transcriptional regulation of rhomboid.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Veias/metabolismo , Asas de Animais/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Elonguina , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética
10.
PLoS Genet ; 8(10): e1003006, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071455

RESUMO

Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Expressão Gênica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/genética , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Fenótipo , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Transcrição Gênica , Transcriptoma
11.
Epigenetics Chromatin ; 5(1): 12, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22870894

RESUMO

BACKGROUND: Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1). The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs), all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. RESULTS: Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the existence of MK-mediated negative feedback regulation on pERK. CONCLUSION: We here identify and characterize important actors in a PRC1-dependent epigenetic signal/response mechanism, some of which appear to be nonspecific global responses, whereas others provide modular specificity. Our findings provide novel insight into a Polycomb-mediated epigenetic mechanism that dynamically controls gene transcription and support a direct link between PRC1 and cellular responses to changes in the microenvironment.

12.
BMC Dev Biol ; 11: 17, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21401930

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. RESULTS: Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. CONCLUSIONS: Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Western Blotting , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Diferenciação Celular , Cromatina/genética , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Sistema de Sinalização das MAP Quinases , Fosforilação , Reação em Cadeia da Polimerase , Cromossomos Politênicos/metabolismo , Asas de Animais/citologia , Asas de Animais/embriologia , Asas de Animais/metabolismo
13.
Genes Cells ; 13(11): 1099-111, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18823331

RESUMO

Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved transduction pathways involved in many cellular processes. Kinase modules are associated with scaffold proteins that regulate signaling by providing critical spatial and temporal specificities. Some of these scaffold proteins have been shown to be conserved, both in sequence and function. In mouse, the scaffold MP1 (MEK Partner 1) forms a signaling complex with MEK1 and ERK1. In this work, we focus on Drosophila MP1 (dMP1). We show that dMP1 is expressed ubiquitously during embryonic and larval development. By in vitro and in vivo experiments, we show that dMP1 is located in the cytoplasm and the nuclei, and that it interacts with MEK and ERK. Genetic studies with transgenic Drosophila lines allowing either dMP1 over-expression or dMP1 down-regulation by RNA interference highlight dMP1 function in the control of cell differentiation during development of the Drosophila wing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Asas de Animais/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação para Baixo , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Camundongos , Interferência de RNA , Asas de Animais/embriologia
14.
Hereditas ; 145(3): 138-46, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18667003

RESUMO

Polycomb-group (PcG) and trithorax-group (trxG) genes encode important regulators of homeotic genes, repressors and activators, respectively. They act through epigenetic mechanisms that maintain chromatin structure. The corto gene of Drosophila melanogaster encodes a co-factor of these regulators belonging to the Enhancer of Trithorax and Polycomb class. We have previously shown that Corto maintains the silencing of the homeotic gene Abdominal-B in the embryo and that it interacts with a cyclin, Cyclin G, suggesting that it could be a major actor in the connection between Polycomb/Trithorax function and the cell cycle. We show here that inactivation of Cyclin G by RNA interference leads to rotated genitalia and cuticle defects in the posterior abdomen of pupae and that corto genetically interacts with Cyclin G for generating these phenotypes. Examination of these pupae shows that development of the dorsal histoblast nests that will give rise to the adult epithelium is impaired in the posterior segments which identity is specified by Abdominal-B. Using a line that expresses LacZ in the Abdominal-B domain, we show that corto maintains Abdominal-B repression in the pupal epithelium whereas Cyclin G maintains its activation. These results prompt us to propose that the interaction between the Enhancer of Trithorax and Polycomb Corto and Cyclin G is involved in regulating the balance between cell proliferation and cell differentiation during abdominal epithelium development.


Assuntos
Ciclinas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Animais , Ciclina D , Drosophila melanogaster , Feminino , Masculino , Interferência de RNA
15.
PLoS One ; 3(2): e1658, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18286205

RESUMO

BACKGROUND: Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Ciclinas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Animais , Cromatina , Ciclina G , Ciclinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , Complexo Repressor Polycomb 1 , Ligação Proteica , Elementos de Resposta , Técnicas do Sistema de Duplo-Híbrido
16.
Dev Genes Evol ; 216(7-8): 443-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16773337

RESUMO

The "hopeful monster" has haunted evolutionary thinking since Richard Goldschmidt coined the phrase in 1933. The phrase is directly related to genetic mechanisms in development and evolution. Cirripedes are peculiar crustaceans in that they all lack abdomens as adults. In a previous study aimed at describing the repertoire of Hox genes of the Cirripedia, we failed to isolate the abdominal-A gene in three species representative of all three cirripede orders. To address the question of whether the cirripede ancestor could have been a "hopeful monster" arising from a rearrangement of the Hox complex, we have performed a cytogenetic analysis of the Hox complex of the cirripede Sacculina carcini. We present here molecular and cytogenetic evidence for the grouping of the Hox genes on a single chromosome. This is the first direct evidence reported for the grouping of Hox genes on the same chromosome in a non-insect arthropod species.


Assuntos
Crustáceos/genética , Genes Homeobox , Família Multigênica , Animais , Passeio de Cromossomo , Cromossomos/genética , Hibridização in Situ Fluorescente , Cariotipagem
17.
BMC Biol ; 4: 9, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16613610

RESUMO

BACKGROUND: Polycomb-group genes (PcG) encode proteins that maintain homeotic (Hox) gene repression throughout development. Conversely, trithorax-group (trxG) genes encode positive factors required for maintenance of long term Hox gene activation. Both kinds of factors bind chromatin regions called maintenance elements (ME). Our previous work has shown that corto, which codes for a chromodomain protein, and dsp1, which codes for an HMGB protein, belong to a class of genes called the Enhancers of trithorax and Polycomb (ETP) that interact with both PcG and trxG. Moreover, dsp1 interacts with the Hox gene Scr, the DSP1 protein is present on a Scr ME in S2 cells but not in embryos. To understand better the role of ETP, we addressed genetic and molecular interactions between corto and dsp1. RESULTS: We show that Corto and DSP1 proteins co-localize at 91 sites on polytene chromosomes and co-immunoprecipitate in embryos. They interact directly through the DSP1 HMG-boxes and the amino-part of Corto, which contains a chromodomain. In order to search for a common target, we performed a genetic interaction analysis. We observed that corto mutants suppressed dsp11 sex comb phenotypes and enhanced AntpScx phenotypes, suggesting that corto and dsp1 are simultaneously involved in the regulation of Scr. Using chromatin immunoprecipitation of the Scr ME, we found that Corto was present on this ME both in Drosophila S2 cells and in embryos, whereas DSP1 was present only in S2 cells. CONCLUSION: Our results reveal that the proteins Corto and DSP1 are differently recruited to a Scr ME depending on whether the ME is active, as seen in S2 cells, or inactive, as in most embryonic cells. The presence of a given combination of ETPs on an ME would control the recruitment of either PcG or TrxG complexes, propagating the silenced or active state.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Ligação Proteica/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Bioessays ; 25(9): 878-87, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12938177

RESUMO

The Crustacea present a variety of body plans not encountered in any other class or phylum of the Metazoa. Here we review our current knowledge on the complement and expression of the Hox genes in Crustacea, addressing questions related to the evolution of body architecture. Specifically, we discuss the molecular mechanisms underlying the homeotic transformation of legs into feeding appendages, which occurred in parallel in several branches of the crustacean evolutionary tree. A second issue that can be approached by the comparative study of Hox genes and their expression in the Crustacea bears on the homology of the abdomen. We discuss whether the so-called "abdominal" tagma of the crustaceans is homologous to the abdomen of insects. In addition, the homology of the abdomen between malacostracan and non-malacostracan crustaceans has also been questioned. We also address the question of the molecular developmental basis of the apparent lack of an abdomen in barnacles. We discuss these issues in relation to the problem of constraint versus adaptation in evolution.


Assuntos
Crustáceos/anatomia & histologia , Crustáceos/fisiologia , Genes Homeobox , Proteínas de Homeodomínio/fisiologia , Animais , Artrópodes , Evolução Biológica , Padronização Corporal , Evolução Molecular , Proteínas de Homeodomínio/metabolismo , Insetos , Filogenia
19.
Dev Genes Evol ; 213(2): 90-6, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12632178

RESUMO

The crustaceans cirripedes (barnacles) are characterised by the lack of fully developed abdominal segments at any stage of their life cycle. However, in nauplius larvae of the cirripede Sacculina carcini, we detected five small engrailed stripes in a postero-dorsal region behind the sixth thoracic segment, that we interpreted as a vestigial abdomen. Here, we present additional morphological and genetic data on Sacculina to further characterise this structure. Scanning electron microscopy analysis confirms the existence of a segmented region in this part of the naupliar body. However, at the late naupliar stage, this structure stops its development and degenerates. This region expresses the Hox gene Abdominal-B, which may indicate that it actually corresponds to the posterior-most part of the Sacculina trunk. In addition, Abdominal-B expression differentiates two types of larvae that probably correspond to male and female larvae, respectively. In contrast, no abdominal-A expression can be detected in the vestigial abdomen. We discuss the possible implication of the loss or divergence of the Abdominal-A protein in the impaired development of abdominal segments in cirripedes.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Thoracica/crescimento & desenvolvimento , Abdome/crescimento & desenvolvimento , Animais , Clonagem Molecular , Feminino , Genitália , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Hibridização In Situ , Larva , Masculino , Microscopia Eletrônica de Varredura , Thoracica/genética
20.
Evol Dev ; 4(2): 76-85, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12004965

RESUMO

In Metazoa, Hox genes control the identity of the body parts along the anteroposterior axis. In addition to this homeotic function, these genes are characterized by two conserved features: They are clustered in the genome, and they contain a particular sequence, the homeobox, encoding a DNA-binding domain. Analysis of Hox homeobox sequences suggests that the Hox cluster emerged early in Metazoa and then underwent gene duplication events. In arthropods, the Hox cluster contains eight genes with a homeotic function and two other Hox-like genes, zerknullt (zen)/Hox3 and fushi tarazu (ftz). In insects, these two genes have lost their homeotic function but have acquired new functions in embryogenesis. In contrast, in chelicerates, these genes are expressed in a Hox-like pattern, which suggests that they have conserved their ancestral homeotic function. We describe here the characterization of Diva, the homologue of ftz in the cirripede crustacean Sacculina carcini. Diva is located in the Hox cluster, in the same position as the ftz genes of insects, and is not expressed in a Hox-like pattern. Instead, it is expressed exclusively in the central nervous system. Such a neurogenic expression of ftz has been also described in insects. This study, which provides the first information about the Hoxcluster in Crustacea, reveals that it may not be much smaller than the insect cluster. Study of the Diva expression pattern suggests that the arthropod ftz gene has lost its ancestral homeotic function after the divergence of the Crustacea/Hexapoda clade from other arthropod clades. In contrast, the function of ftz during neurogenesis is well conserved in insects and crustaceans.


Assuntos
Crustáceos/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Proteína do Homeodomínio de Antennapedia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Fatores de Transcrição Fushi Tarazu , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...