Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Diabetes Obes Metab ; 26(5): 1950-1961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504142

RESUMO

AIM: To conduct a systematic review with meta-analysis to provide a comprehensive synthesis of randomized controlled trials (RCTs) and prospective cohort studies investigating the effects of currently available bolus advisors on glycaemic parameters in adults with diabetes. MATERIALS AND METHODS: An electronic search of PubMed, Embase, CINAHL, Cochrane Library and ClinicalTrials.gov was conducted in December 2022. The risk of bias was assessed using the revised Cochrane Risk of Bias tool. (Standardized) mean difference (MD) was selected to determine the difference in continuous outcomes between the groups. A random-effects model meta-analysis and meta-regression were performed. This systematic review was registered on PROSPERO (CRD42022374588). RESULTS: A total of 18 RCTs involving 1645 adults (50% females) with a median glycated haemoglobin (HbA1c) concentration of 8.45% (7.95%-9.30%) were included. The majority of participants had type 1 diabetes (N = 1510, 92%) and were on multiple daily injections (N = 1173, 71%). Twelve of the 18 trials had low risk of bias. The meta-analysis of 10 studies with available data on HbA1c showed that the use of a bolus advisor modestly reduced HbA1c compared to standard treatment (MD -011%, 95% confidence interval -0.22 to -0.01; I2 = 0%). This effect was accompanied by small improvements in low blood glucose index and treatment satisfaction, but not with reductions in hypoglycaemic events or changes in other secondary outcomes. CONCLUSION: Use of a bolus advisor is associated with slightly better glucose control and treatment satisfaction in people with diabetes on intensive insulin treatment. Future studies should investigate whether personalizing bolus advisors using artificial intelligence technology can enhance these effects.

2.
Nutrients ; 15(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686866

RESUMO

A healthy diet can help to prevent or manage many important conditions and diseases, particularly obesity, malnutrition, and diabetes. Recent advancements in artificial intelligence and smartphone technologies have enabled applications to conduct automatic nutritional assessment from meal images, providing a convenient, efficient, and accurate method for continuous diet evaluation. We now extend the goFOODTM automatic system to perform food segmentation, recognition, volume, as well as calorie and macro-nutrient estimation from single images that are captured by a smartphone. In order to assess our system's performance, we conducted a feasibility study with 50 participants from Switzerland. We recorded their meals for one day and then dietitians carried out a 24 h recall. We retrospectively analysed the collected images to assess the nutritional content of the meals. By comparing our results with the dietitians' estimations, we demonstrated that the newly introduced system has comparable energy and macronutrient estimation performance with the previous method; however, it only requires a single image instead of two. The system can be applied in a real-life scenarios, and it can be easily used to assess dietary intake. This system could help individuals gain a better understanding of their dietary consumption. Additionally, it could serve as a valuable resource for dietitians, and could contribute to nutritional research.


Assuntos
Inteligência Artificial , Condições Sociais , Humanos , Estudos Retrospectivos , Refeições , Dieta Saudável
3.
Eur Phys J Plus ; 138(5): 391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192839

RESUMO

Medical imaging has been intensively employed in screening, diagnosis and monitoring during the COVID-19 pandemic. With the improvement of RT-PCR and rapid inspection technologies, the diagnostic references have shifted. Current recommendations tend to limit the application of medical imaging in the acute setting. Nevertheless, efficient and complementary values of medical imaging have been recognized at the beginning of the pandemic when facing unknown infectious diseases and a lack of sufficient diagnostic tools. Optimizing medical imaging for pandemics may still have encouraging implications for future public health, especially for long-lasting post-COVID-19 syndrome theranostics. A critical concern for the application of medical imaging is the increased radiation burden, particularly when medical imaging is used for screening and rapid containment purposes. Emerging artificial intelligence (AI) technology provides the opportunity to reduce the radiation burden while maintaining diagnostic quality. This review summarizes the current AI research on dose reduction for medical imaging, and the retrospective identification of their potential in COVID-19 may still have positive implications for future public health.

4.
Invest Radiol ; 58(8): 602-609, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058321

RESUMO

ABSTRACT: Interstitial lung disease (ILD) is now diagnosed by an ILD-board consisting of radiologists, pulmonologists, and pathologists. They discuss the combination of computed tomography (CT) images, pulmonary function tests, demographic information, and histology and then agree on one of the 200 ILD diagnoses. Recent approaches employ computer-aided diagnostic tools to improve detection of disease, monitoring, and accurate prognostication. Methods based on artificial intelligence (AI) may be used in computational medicine, especially in image-based specialties such as radiology. This review summarises and highlights the strengths and weaknesses of the latest and most significant published methods that could lead to a holistic system for ILD diagnosis. We explore current AI methods and the data use to predict the prognosis and progression of ILDs. It is then essential to highlight the data that holds the most information related to risk factors for progression, e.g., CT scans and pulmonary function tests. This review aims to identify potential gaps, highlight areas that require further research, and identify the methods that could be combined to yield more promising results in future studies.


Assuntos
Inteligência Artificial , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Prognóstico , Tomografia Computadorizada por Raios X/métodos , Radiologistas , Pulmão/diagnóstico por imagem
5.
J Diabetes Sci Technol ; 17(4): 1056-1065, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35348398

RESUMO

Diabetes mellitus (DM) and obesity are chronic medical conditions associated with significant morbidity and mortality. Accurate macronutrient and energy estimation could be beneficial in attempts to manage DM and obesity, leading to improved glycemic control and weight reduction, respectively. Existing dietary assessment methods are subject to major errors in measurement, are time consuming, are costly, and do not provide real-time feedback. The increasing adoption of smartphones and artificial intelligence, along with the advances in algorithms and hardware, allowed the development of technologies executed in smartphones that use food/beverage multimedia data as an input, and output information about the nutrient content in almost real time. Scope of this review was to explore the various image-based and video-based systems designed for dietary assessment. We identified 22 different systems and divided these into three categories on the basis of their setting for evaluation: laboratory (12), preclinical (7), and clinical (3). The major findings of the review are that there is still a number of open research questions and technical challenges to be addressed and end users-including health care professionals and patients-need to be involved in the design and development of such innovative solutions. Last, there is a clear need that these systems should be validated under unconstrained real-life conditions and that they should be compared with conventional methods for dietary assessment.


Assuntos
Aplicativos Móveis , Humanos , Inteligência Artificial , Multimídia , Avaliação Nutricional , Obesidade , Doença Crônica
6.
Rofo ; 195(1): 47-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067777

RESUMO

Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.We retrospectively extracted between 15-25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions. Two subspecialized chest radiologists defined the ground truth in consensus. 4 residents, 2 fellows, and 2 general consultants in radiology with 3 to 13 years of experience in chest imaging performed a blinded readout. In order to account for data clustering, a generalized linear mixed model (GLMM) with random intercept for reader and nested for patient and image and a kernel/experience interaction term was used to analyze the results.The results of the GLMM indicated, that the odds of correct pattern recognition is 12 % lower with lung kernel compared to soft kernel; however, this was not statistically significant (OR 0.88; 95%-CI, 0.73-1.06; p = 0.187). Furthermore, the consultants' odds of correct pattern recognition was 78 % higher than the residents' odds, although this finding did not reach statistical significance either (OR 1.78; 95%-CI, 0.62-5.06; p = 0.283). There was no significant interaction between the two fixed terms kernel and experience. Intra-rater agreement between lung and soft kernel was substantial (κ = 0.63 ±â€Š0.19). The mean inter-rater agreement for lung/soft kernel was κ = 0.37 ±â€Š0.17/κ = 0.38 ±â€Š0.17.There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in ILD. There are non-significant trends indicating that the use of soft kernels and a higher level of experience lead to a higher probability of correct pattern identification. · There is no significant difference between lung and soft kernel reconstructed CT images for the correct pattern recognition in interstitial lung disease.. · There are even non-significant tendencies that the use of soft kernels lead to a higher probability of correct pattern identification.. · These results challenge the current recommendations and the routinely performed separate lung kernel reconstructions for lung parenchyma analysis.. CITATION FORMAT: · Klaus JB, Christodoulidis S, Peters AA et al. Influence of Lung Reconstruction Algorithms on Interstitial Lung Pattern Recognition on CT. Fortschr Röntgenstr 2023; 195: 47 - 54.


Assuntos
Pulmão , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Algoritmos
7.
Sci Rep ; 12(1): 17008, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220998

RESUMO

Mediterranean diet (MD) can play a major role in decreasing the risks of non-communicable diseases and preventing overweight and obesity. In order for a person to follow the MD and assess their adherence to it, proper dietary assessment methods are required. We have developed an Artificial Intelligence-powered system that recognizes the food and drink items from a single meal photo and estimates their respective serving size, and integrated it into a smartphone application that automatically calculates MD adherence score and outputs a weekly feedback report. We compared the MD adherence score of four users as calculated by the system versus an expert dietitian, and the mean difference was 3.5% and statistically not significant. Afterwards, we conducted a feasibility study with 24 participants, to evaluate the system's performance and to gather the users' and dietitians' feedback. The image recognition system achieved 61.8% mean Average Precision for the testing set and 57.3% for the feasibility study images (where the ground truth was taken as the participants' annotations). The feedback from the participants of the feasibility study was also very positive.


Assuntos
Dieta Mediterrânea , Inteligência Artificial , Estudos de Viabilidade , Humanos , Refeições , Sobrepeso
8.
Nutrients ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960091

RESUMO

Malnutrition is common, especially among older, hospitalised patients, and is associated with higher mortality, longer hospitalisation stays, infections, and loss of muscle mass. It is therefore of utmost importance to employ a proper method for dietary assessment that can be used for the identification and management of malnourished hospitalised patients. In this study, we propose an automated Artificial Intelligence (AI)-based system that receives input images of the meals before and after their consumption and is able to estimate the patient's energy, carbohydrate, protein, fat, and fatty acids intake. The system jointly segments the images into the different food components and plate types, estimates the volume of each component before and after consumption, and calculates the energy and macronutrient intake for every meal, based on the kitchen's menu database. Data acquired from an acute geriatric hospital as well as from our previous study were used for the fine-tuning and evaluation of the system. The results from both our system and the hospital's standard procedure were compared to the estimations of experts. Agreement was better with the system, suggesting that it has the potential to replace standard clinical procedures with a positive impact on time spent directly with the patients.


Assuntos
Inteligência Artificial , Dieta/normas , Ingestão de Energia , Processamento de Imagem Assistida por Computador , Avaliação Nutricional , Idoso , Ingestão de Alimentos , Comportamento Alimentar , Hospitalização , Humanos , Pacientes Internados , Desnutrição/prevenção & controle , Refeições
9.
JMIR Mhealth Uhealth ; 9(7): e27885, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328425

RESUMO

BACKGROUND: Digital technologies have evolved dramatically in recent years, finding applications in a variety of aspects of everyday life. Smartphones and mobile apps are being used for a steadily increasing number of tasks, including health monitoring. A large number of nutrition and diet apps are available, and some of them are very popular in terms of user downloads, highlighting a trend toward diet monitoring and assessment. OBJECTIVE: We sought to explore the perspectives of end users on the features, current use, and acceptance of nutrition and diet mHealth apps with a survey. We expect that this study can provide user insights to assist researchers and developers in achieving innovative dietary assessments. METHODS: A multidisciplinary team designed and compiled the survey. Before its release, it was pilot-tested by 18 end users. A 19-question survey was finally developed and was translated into six languages: English, German, French, Spanish, Italian, and Greek. The participants were mainly recruited via social media platforms and mailing lists of universities, university hospitals, and patient associations. RESULTS: A total of 2382 respondents (1891 female, 79.4%; 474 male, 19.9%; and 17 neither, 0.7%) with a mean age of 27.2 years (SD 8.5) completed the survey. Approximately half of the participants (1227/2382, 51.5%) had used a nutrition and diet app. The primary criteria for selecting such an app were ease of use (1570/2382, 65.9%), free cost (1413/2382, 59.3%), and ability to produce automatic readings of caloric content (1231/2382, 51.7%) and macronutrient content (1117/2382, 46.9%) (ie, food type and portion size are estimated by the system without any contribution from the user). An app was less likely to be selected if it incorrectly estimated portion size, calories, or nutrient content (798/2382, 33.5%). Other important limitations included the use of a database that does not include local foods (655/2382, 27.5%) or that may omit major foods (977/2382, 41%). CONCLUSIONS: This comprehensive study in a mostly European population assessed the preferences and perspectives of potential nutrition and diet app users. Understanding user needs will benefit researchers who develop tools for innovative dietary assessment as well as those who assist research on behavioral changes related to nutrition.


Assuntos
Aplicativos Móveis , Smartphone , Adulto , Dieta , Feminino , Humanos , Internet , Masculino , Inquéritos e Questionários
10.
Eur J Nucl Med Mol Imaging ; 48(8): 2500-2524, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932183

RESUMO

Medical imaging methods are assuming a greater role in the workup of patients with COVID-19, mainly in relation to the primary manifestation of pulmonary disease and the tissue distribution of the angiotensin-converting-enzyme 2 (ACE 2) receptor. However, the field is so new that no consensus view has emerged guiding clinical decisions to employ imaging procedures such as radiography, computer tomography (CT), positron emission tomography (PET), and magnetic resonance imaging, and in what measure the risk of exposure of staff to possible infection could be justified by the knowledge gained. The insensitivity of current RT-PCR methods for positive diagnosis is part of the rationale for resorting to imaging procedures. While CT is more sensitive than genetic testing in hospitalized patients, positive findings of ground glass opacities depend on the disease stage. There is sparse reporting on PET/CT with [18F]-FDG in COVID-19, but available results are congruent with the earlier literature on viral pneumonias. There is a high incidence of cerebral findings in COVID-19, and likewise evidence of gastrointestinal involvement. Artificial intelligence, notably machine learning is emerging as an effective method for diagnostic image analysis, with performance in the discriminative diagnosis of diagnosis of COVID-19 pneumonia comparable to that of human practitioners.


Assuntos
COVID-19 , Pneumonia Viral , Inteligência Artificial , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , SARS-CoV-2
11.
JMIR Mhealth Uhealth ; 9(1): e24467, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33439139

RESUMO

BACKGROUND: Technological advancements have enabled nutrient estimation by smartphone apps such as goFOOD. This is an artificial intelligence-based smartphone system, which uses food images or video captured by the user as input and then translates these into estimates of nutrient content. The quality of the data is highly dependent on the images the user records. This can lead to a major loss of data and impaired quality. Instead of removing these data from the study, in-depth analysis is needed to explore common mistakes and to use them for further improvement of automated apps for nutrition assessment. OBJECTIVE: The aim of this study is to analyze common mistakes made by participants using the goFOOD Lite app, a version of goFOOD, which was designed for food-logging, but without providing results to the users, to improve both the instructions provided and the automated functionalities of the app. METHODS: The 48 study participants were given face-to-face instructions for goFOOD Lite and were asked to record 2 pictures (1 recording) before and 2 pictures (1 recording) after the daily consumption of each food or beverage, using a reference card as a fiducial marker. All pictures that were discarded for processing due to mistakes were analyzed to record the main mistakes made by users. RESULTS: Of the 468 recordings of nonpackaged food items captured by the app, 60 (12.8%) had to be discarded due to errors in the capturing procedure. The principal problems were as follows: wrong fiducial marker or improper marker use (19 recordings), plate issues such as a noncompatible or nonvisible plate (8 recordings), a combination of various issues (17 recordings), and other reasons such as obstacles (hand) in front of the camera or matching recording pairs (16 recordings). CONCLUSIONS: No other study has focused on the principal problems in the use of automatic apps for assessing nutritional intake. This study shows that it is important to provide study participants with detailed instructions if high-quality data are to be obtained. Future developments could focus on making it easier to recognize food on various plates from its color or shape and on exploring alternatives to using fiducial markers. It is also essential for future studies to understand the training needed by the participants as well as to enhance the app's user-friendliness and to develop automatic image checks based on participant feedback.


Assuntos
Aplicativos Móveis , Inteligência Artificial , Humanos , Avaliação Nutricional , Estado Nutricional , Smartphone
12.
Invest Radiol ; 56(6): 348-356, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259441

RESUMO

MATERIALS AND METHODS: Five publicly available databases comprising normal CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used. After the harmonization of the data, the training set included 7966 normal cases, 5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia, whereas in the testing data set, each category was represented by 100 cases. Eleven blinded radiologists with various levels of expertise independently read the testing data set. The data were analyzed separately with the newly proposed artificial intelligence-based system and by consultant radiologists and residents, with respect to positive predictive value (PPV), sensitivity, and F-score (harmonic mean for PPV and sensitivity). The χ2 test was used to compare the sensitivity, specificity, accuracy, PPV, and F-scores of the readers and the system. RESULTS: The proposed system achieved higher overall diagnostic accuracy (94.3%) than the radiologists (61.4% ± 5.3%). The radiologists reached average sensitivities for normal CXR, other type of pneumonia, and COVID-19 pneumonia of 85.0% ± 12.8%, 60.1% ± 12.2%, and 53.2% ± 11.2%, respectively, which were significantly lower than the results achieved by the algorithm (98.0%, 88.0%, and 97.0%; P < 0.00032). The mean PPVs for all 11 radiologists for the 3 categories were 82.4%, 59.0%, and 59.0% for the healthy, other pneumonia, and COVID-19 pneumonia, respectively, resulting in an F-score of 65.5% ± 12.4%, which was significantly lower than the F-score of the algorithm (94.3% ± 2.0%, P < 0.00001). When other pneumonia and COVID-19 pneumonia cases were pooled, the proposed system reached an accuracy of 95.7% for any pathology and the radiologists, 88.8%. The overall accuracy of consultants did not vary significantly compared with residents (65.0% ± 5.8% vs 67.4% ± 4.2%); however, consultants detected significantly more COVID-19 pneumonia cases (P = 0.008) and less healthy cases (P < 0.00001). CONCLUSIONS: The system showed robust accuracy for COVID-19 pneumonia detection on CXR and surpassed radiologists at various training levels.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Radiografia Torácica , Feminino , Humanos , Valor Preditivo dos Testes , Estudos Retrospectivos
13.
Nutrients ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297550

RESUMO

The Mediterranean diet (MD) is regarded as a healthy eating pattern with beneficial effects both for the decrease of the risk for non-communicable diseases and also for body weight reduction. In the current manuscript, we propose an automated smartphone application which monitors and evaluates the user's adherence to MD using images of the food and drinks that they consume. We define a set of rules for automatic adherence estimation, which focuses on the main MD food groups. We use a combination of a convolutional neural network (CNN) and a graph convolutional network to detect the types of foods and quantities from the users' food images and the defined set of rules to evaluate the adherence to MD. Our experiments show that our system outperforms a basic CNN in terms of recognizing food items and estimating quantity and yields comparable results as experienced dietitians when it comes to overall MD adherence estimation. As the system is novel, these results are promising; however, there is room for improvement of the accuracy by gathering and training with more data and certain refinements can be performed such as re-defining the set of rules to also be able to be used for sub-groups of MD (e.g., vegetarian type of MD).


Assuntos
Inquéritos sobre Dietas/métodos , Dieta Mediterrânea/estatística & dados numéricos , Fidelidade a Diretrizes/estatística & dados numéricos , Política Nutricional , Smartphone , Inteligência Artificial , Comportamento Alimentar , Humanos , Redes Neurais de Computação , Avaliação Nutricional
14.
Sensors (Basel) ; 20(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752007

RESUMO

Accurate estimation of nutritional information may lead to healthier diets and better clinical outcomes. We propose a dietary assessment system based on artificial intelligence (AI), named goFOODTM. The system can estimate the calorie and macronutrient content of a meal, on the sole basis of food images captured by a smartphone. goFOODTM requires an input of two meal images or a short video. For conventional single-camera smartphones, the images must be captured from two different viewing angles; smartphones equipped with two rear cameras require only a single press of the shutter button. The deep neural networks are used to process the two images and implements food detection, segmentation and recognition, while a 3D reconstruction algorithm estimates the food's volume. Each meal's calorie and macronutrient content is calculated from the food category, volume and the nutrient database. goFOODTM supports 319 fine-grained food categories, and has been validated on two multimedia databases that contain non-standardized and fast food meals. The experimental results demonstrate that goFOODTM performed better than experienced dietitians on the non-standardized meal database, and was comparable to them on the fast food database. goFOODTM provides a simple and efficient solution to the end-user for dietary assessment.


Assuntos
Inteligência Artificial , Avaliação Nutricional , Ingestão de Energia , Refeições , Smartphone
15.
Nutrients ; 12(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722339

RESUMO

Accurate dietary assessment is crucial for both the prevention and treatment of nutrition-related diseases. Since mobile-based dietary assessment solutions are promising, we sought to examine the acceptability of "Nutrition and Diet" (ND) apps by Healthcare Professionals (HCP), explore their preferences on apps' features and identify predictors of acceptance. A 23 question survey was developed by an interdisciplinary team and pilot-tested. The survey was completed by 1001 HCP from 73 countries and 6 continents. The HCP (dietitians: 833, doctors: 75, nurses: 62, other: 31/females: 847, males: 150, neither: 4) had a mean age (SD) of 34.4 (10.2) years and mean job experience in years (SD): 7.7 (8.2). There were 45.5% who have recommended ND apps to their clients/patients. Of those who have not yet recommended an app, 22.5% do not know of their existence. Important criteria for selecting an app were ease of use (87.1%), apps being free of charge (72.6%) and validated (69%). Significant barriers were the use of inaccurate food composition database (52%), lack of local food composition database support (48.2%) and tech-savviness (43.3%). Although the adoption of smartphones is growing and mobile health research is advancing, there is room for improvement in the recommendation of ND apps by HCP.


Assuntos
Pessoal de Saúde/psicologia , Aplicativos Móveis , Avaliação Nutricional , Nutricionistas/psicologia , Telemedicina , Adulto , Atitude do Pessoal de Saúde , Feminino , Humanos , Masculino , Smartphone , Inquéritos e Questionários
16.
PLoS One ; 15(1): e0226084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929532

RESUMO

PURPOSE: To conduct a meta-analysis to determine specific computed tomography (CT) patterns and clinical features that discriminate between nonspecific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). MATERIALS AND METHODS: The PubMed/Medline and Embase databases were searched for studies describing the radiological patterns of UIP and NSIP in chest CT images. Only studies involving histologically confirmed diagnoses and a consensus diagnosis by an interstitial lung disease (ILD) board were included in this analysis. The radiological patterns and patient demographics were extracted from suitable articles. We used random-effects meta-analysis by DerSimonian & Laird and calculated pooled odds ratios for binary data and pooled mean differences for continuous data. RESULTS: Of the 794 search results, 33 articles describing 2,318 patients met the inclusion criteria. Twelve of these studies included both NSIP (338 patients) and UIP (447 patients). NSIP-patients were significantly younger (NSIP: median age 54.8 years, UIP: 59.7 years; mean difference (MD) -4.4; p = 0.001; 95% CI: -6.97 to -1.77), less often male (NSIP: median 52.8%, UIP: 73.6%; pooled odds ratio (OR) 0.32; p<0.001; 95% CI: 0.17 to 0.60), and less often smokers (NSIP: median 55.1%, UIP: 73.9%; OR 0.42; p = 0.005; 95% CI: 0.23 to 0.77) than patients with UIP. The CT findings from patients with NSIP revealed significantly lower levels of the honeycombing pattern (NSIP: median 28.9%, UIP: 73.4%; OR 0.07; p<0.001; 95% CI: 0.02 to 0.30) with less peripheral predominance (NSIP: median 41.8%, UIP: 83.3%; OR 0.21; p<0.001; 95% CI: 0.11 to 0.38) and more subpleural sparing (NSIP: median 40.7%, UIP: 4.3%; OR 16.3; p = 0.005; 95% CI: 2.28 to 117). CONCLUSION: Honeycombing with a peripheral predominance was significantly associated with a diagnosis of UIP. The NSIP pattern showed more subpleural sparing. The UIP pattern was predominantly observed in elderly males with a history of smoking, whereas NSIP occurred in a younger patient population.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Doenças Pulmonares Intersticiais/patologia , Fatores Etários , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/epidemiologia , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/epidemiologia , Prevalência , Fatores Sexuais , Fumar , Tomografia Computadorizada por Raios X
17.
Invest Radiol ; 54(10): 627-632, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483764

RESUMO

OBJECTIVES: The objective of this study is to assess the performance of a computer-aided diagnosis (CAD) system (INTACT system) for the automatic classification of high-resolution computed tomography images into 4 radiological diagnostic categories and to compare this with the performance of radiologists on the same task. MATERIALS AND METHODS: For the comparison, a total of 105 cases of pulmonary fibrosis were studied (54 cases of nonspecific interstitial pneumonia and 51 cases of usual interstitial pneumonia). All diagnoses were interstitial lung disease board consensus diagnoses (radiologically or histologically proven cases) and were retrospectively selected from our database. Two subspecialized chest radiologists made a consensual ground truth radiological diagnosis, according to the Fleischner Society recommendations. A comparison analysis was performed between the INTACT system and 2 other radiologists with different years of experience (readers 1 and 2). The INTACT system consists of a sequential pipeline in which first the anatomical structures of the lung are segmented, then the various types of pathological lung tissue are identified and characterized, and this information is then fed to a random forest classifier able to recommend a radiological diagnosis. RESULTS: Reader 1, reader 2, and INTACT achieved similar accuracy for classifying pulmonary fibrosis into the original 4 categories: 0.6, 0.54, and 0.56, respectively, with P > 0.45. The INTACT system achieved an F-score (harmonic mean for precision and recall) of 0.56, whereas the 2 readers, on average, achieved 0.57 (P = 0.991). For the pooled classification (2 groups, with and without the need for biopsy), reader 1, reader 2, and CAD had similar accuracies of 0.81, 0.70, and 0.81, respectively. The F-score was again similar for the CAD system and the radiologists. The CAD system and the average reader reached F-scores of 0.80 and 0.79 (P = 0.898). CONCLUSIONS: We found that a computer-aided detection algorithm based on machine learning was able to classify idiopathic pulmonary fibrosis with similar accuracy to a human reader.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Fibrose Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biópsia , Diagnóstico por Computador , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fibrose Pulmonar/patologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3609-3612, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946658

RESUMO

The existing adaptive basal-bolus advisor (ABBA) was further developed to benefit patients under insulin therapy with multiple daily injections (MDI). Three different in silico experiments were conducted with the DMMS.R simulator to validate the approach of combined use of self-monitoring of blood glucose (SMBG) and insulin injection devices, e.g. insulin pen, as are used by the majority of type 1 diabetes patients under insulin therapy. The proposed approach outperforms the conventional method, as it increases the time spent within the target range and simultaneously reduces the risks of hyperglycaemic and hypoglycaemic events.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Reforço Psicológico , Automonitorização da Glicemia , Simulação por Computador , Humanos , Sistemas de Infusão de Insulina
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5696-5699, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947145

RESUMO

Regular nutrient intake monitoring in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition (DRM). Although several methods to estimate nutrient intake have been developed, there is still a clear demand for a more reliable and fully automated technique, as this could improve the data accuracy and reduce both the participant burden and the health costs. In this paper, we propose a novel system based on artificial intelligence to accurately estimate nutrient intake, by simply processing RGB depth image pairs captured before and after a meal consumption. For the development and evaluation of the system, a dedicated and new database of images and recipes of 322 meals was assembled, coupled to data annotation using innovative strategies. With this database, a system was developed that employed a novel multi-task neural network and an algorithm for 3D surface construction. This allowed sequential semantic food segmentation and estimation of the volume of the consumed food, and permitted fully automatic estimation of nutrient intake for each food type with a 15% estimation error.


Assuntos
Inteligência Artificial , Pacientes Internados , Avaliação Nutricional , Algoritmos , Humanos , Refeições , Nutrientes , Estado Nutricional
20.
IEEE J Biomed Health Inform ; 23(2): 714-722, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29993791

RESUMO

Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a data set of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semisupervised fashion, utilizing both labeled and nonlabeled image regions. The experimental results show significant performance improvement with respect to the state of the art.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Humanos , Semântica , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA