Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(11): e1010774, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441826

RESUMO

Expression of the transcriptional transactivator protein Tax, encoded on the proviral plus-strand of human T-cell leukaemia virus type 1 (HTLV-1), is crucial for the replication of the virus, but Tax-expressing cells are rarely detected in fresh blood ex vivo. The dynamics and consequences of the proviral plus-strand transcriptional burst remain insufficiently characterised. We combined time-lapse live-cell imaging, single-cell tracking and mathematical modelling to study the dynamics of Tax expression at single-cell resolution in two naturally-infected, non-malignant T-cell clones transduced with a short-lived enhanced green fluorescent protein (d2EGFP) Tax reporter system. Five different patterns of Tax expression were observed during the 30-hour observation period; the distribution of these patterns differed between the two clones. The mean duration of Tax expression in the two clones was 94 and 417 hours respectively, estimated from mathematical modelling of the experimental data. Tax expression was associated with a transient slowing in cell-cycle progression and proliferation, increased apoptosis, and enhanced activation of the DNA damage response pathways. Longer-term follow-up (14 days) revealed an increase in the proportion of proliferating cells and a decrease in the fraction of apoptotic cells as the cells ceased Tax expression, resulting in a greater net expansion of the initially Tax-positive population. Time-lapse live-cell imaging showed enhanced cell-to-cell adhesion among Tax-expressing cells, and decreased cell motility of Tax-expressing cells at the single-cell level. The results demonstrate the within-clone and between-clone heterogeneity in the dynamics and patterns of HTLV-1 plus-strand transcriptional bursts and the balance of positive and negative consequences of the burst for the host cell.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Provírus , Humanos , Provírus/genética , Vírus Linfotrópico T Tipo 1 Humano/genética
2.
Sci Rep ; 12(1): 12172, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842494

RESUMO

Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin ß4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.


Assuntos
Nefropatias , Podócitos , Albuminúria , Animais , Células Cultivadas , Doxorrubicina , Terapia Genética , Glomérulos Renais , Camundongos , Timosina
3.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132964

RESUMO

Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.


Assuntos
Cegueira/congênito , Gerenciamento Clínico , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Previsões , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Degeneração Retiniana/fisiopatologia , Espasmos Infantis/fisiopatologia , Adolescente , Adulto , Animais , Cegueira/complicações , Cegueira/fisiopatologia , Cegueira/terapia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Seguimentos , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/terapia , Degeneração Retiniana/complicações , Degeneração Retiniana/terapia , Espasmos Infantis/complicações , Espasmos Infantis/terapia , Adulto Jovem
4.
Neuropathol Appl Neurobiol ; 47(6): 781-795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797808

RESUMO

AIMS: We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell-cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS: Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS: We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS: Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell-cell interactions and cellular heterogeneity in developmental neuropathology.


Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Transdução de Sinais/fisiologia , Esclerose Tuberosa/metabolismo , Encéfalo/patologia , Deficiências do Desenvolvimento/patologia , Humanos , Imuno-Histoquímica , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
5.
Dis Model Mech ; 11(11)2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30266836

RESUMO

FGFR2c regulates many aspects of craniofacial and skeletal development. Mutations in the FGFR2 gene are causative of multiple forms of syndromic craniosynostosis, including Crouzon syndrome. Paradoxically, mouse studies have shown that the activation (Fgfr2cC342Y; a mouse model for human Crouzon syndrome), as well as the removal (Fgfr2cnull), of the FGFR2c isoform can drive suture abolishment. This study aims to address the downstream effects of pathogenic FGFR2c signalling by studying the effects of Fgfr2c overexpression. Conditional overexpression of Fgfr2c (R26RFgfr2c;ßact) results in craniofacial hypoplasia as well as microtia and cleft palate. Contrary to Fgfr2cnull and Fgfr2cC342Y, Fgfr2c overexpression is insufficient to drive onset of craniosynostosis. Examination of the MAPK/ERK pathway in the embryonic sutures of Fgfr2cC342Y and R26RFgfr2c;ßact mice reveals that both mutants have increased pERK expression. The contrasting phenotypes between Fgfr2cC342Y and R26RFgfr2c;ßact mice prompted us to assess the impact of the Fgfr2c overexpression allele on the Crouzon mouse (Fgfr2cC342Y), in particular its effects on the coronal suture. Our results demonstrate that Fgfr2c overexpression is sufficient to partially rescue craniosynostosis through increased proliferation and reduced osteogenic activity in E18.5 Fgfr2cC342Y embryos. This study demonstrates the intricate balance of FGF signalling required for correct calvarial bone and suture morphogenesis, and that increasing the expression of the wild-type FGFR2c isoform could be a way to prevent or delay craniosynostosis progression.


Assuntos
Osso e Ossos/anormalidades , Osso e Ossos/patologia , Disostose Craniofacial/patologia , Craniossinostoses/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fosfatase Alcalina/metabolismo , Alelos , Animais , Proliferação de Células , Fissura Palatina/patologia , Microtia Congênita/genética , Microtia Congênita/patologia , Suturas Cranianas/patologia , Disostose Craniofacial/genética , Craniossinostoses/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação/genética , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/patologia
6.
J Clin Invest ; 127(5): 1700-1713, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346228

RESUMO

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain-containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (-7), deletions of 7q (7q-), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with -7 and 7q- developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.


Assuntos
Insuficiência Adrenal/congênito , Deleção Cromossômica , Mutação da Fase de Leitura , Haploinsuficiência , Síndromes Mielodisplásicas/genética , Proteínas/genética , Insuficiência Adrenal/genética , Insuficiência Adrenal/mortalidade , Cromossomos Humanos Par 7 , Estudos de Coortes , Mutação da Fase de Leitura/genética , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Síndromes Mielodisplásicas/mortalidade
7.
Immunol Rev ; 256(1): 282-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24117828

RESUMO

The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.


Assuntos
Citoesqueleto de Actina , Síndromes de Imunodeficiência/etiologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/imunologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mutação , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
8.
Nat Mater ; 12(3): 253-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291707

RESUMO

The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at short timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology at short timescales.


Assuntos
Citoplasma/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Forma Celular , Tamanho Celular , Citoesqueleto/fisiologia , Elasticidade , Porosidade , Reologia , Estresse Mecânico
9.
Blood ; 120(18): 3803-11, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22972986

RESUMO

The constitutively active mutant of the Wiskott-Aldrich Syndrome protein (CA-WASp) is the cause of X-linked neutropenia and is linked with genomic instability and myelodysplasia. CA-WASp generates abnormally high levels of cytoplasmic F-actin through dysregulated activation of the Arp2/3 complex leading to defects in cell division. As WASp has no reported role in cell division, we hypothesized that alteration of cell mechanics because of increased F-actin may indirectly disrupt dynamic events during mitosis. Inhibition of the Arp2/3 complex revealed that excess cytoplasmic F-actin caused increased cellular viscosity, slowed all phases of mitosis, and perturbed mitotic mechanics. Comparison of chromosome velocity to the cytoplasmic viscosity revealed that cells compensated for increased viscosity by up-regulating force applied to chromosomes and increased the density of microtubules at kinetochores. Mitotic abnormalities were because of overload of the aurora signaling pathway as subcritical inhibition of Aurora in CA-WASp cells caused increased cytokinesis failure, while overexpression reduced defects. These findings demonstrate that changes in cell mechanics can cause significant mitotic abnormalities leading to genomic instability, and highlight the importance of mechanical sensors such as Aurora B in maintaining the fidelity of hematopoietic cell division.


Assuntos
Actinas/metabolismo , Citocinese/fisiologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Mitose/fisiologia , Neutropenia/congênito , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Reparo do DNA/fisiologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Mutação , Neutropenia/genética , Neutropenia/metabolismo , Transdução Genética , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
10.
Blood ; 115(26): 5355-65, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20354175

RESUMO

Leukocytes rely on dynamic actin-dependent changes in cell shape to pass through blood vessels, which is fundamental to immune surveillance. Wiskott-Aldrich Syndrome protein (WASp) is a hematopoietic cell-restricted cytoskeletal regulator important for modulating cell shape through Arp2/3-mediated actin polymerization. A recently identified WASp(I294T) mutation was shown to render WASp constitutively active in vivo, causing increased filamentous (F)-actin polymerization, high podosome turnover in macrophages, and myelodysplasia. The aim of this study was to determine the effect of WASp(I294T) expression in lymphocytes. Here, we report that lymphocytes isolated from a patient with WASp(I294T), and in a cellular model of WASp(I294T), displayed abnormal microvillar architecture, associated with an increase in total cellular F-actin. Microvillus function was additionally altered as lymphocytes bearing the WASp(I294T) mutation failed to roll normally on L-selectin ligand under flow. This was not because of defects in L-selectin expression, shedding, cytoskeletal anchorage, or membranal positioning; however, under static conditions of adhesion, WASp(I294T)-expressing lymphocytes exhibited altered dynamic interaction with L-selectin ligand, with a significantly reduced rate of adhesion turnover. Together, our results demonstrate that WASp(I294T) significantly affects lymphocyte membrane topography and L-selectin-dependent adhesion, which may be linked to defective hematopoiesis and leukocyte function in affected patients.


Assuntos
Adesão Celular , Doenças Genéticas Ligadas ao Cromossomo X/genética , Leucopenia/genética , Linfócitos/citologia , Microvilosidades/ultraestrutura , Mutação , Proteína da Síndrome de Wiskott-Aldrich/genética , Actinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Células Cultivadas , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Selectina L/genética , Selectina L/metabolismo , Leucócitos Mononucleares/citologia , Leucopenia/metabolismo , Linfócitos/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(37): 15738-43, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19805221

RESUMO

The Wiskott-Aldrich syndrome protein (WASp) is a key cytoskeletal regulator in hematopoietic cells. Covalent modification of a conserved tyrosine by phosphorylation has emerged as an important potential determinant of activity, although the physiological significance remains uncertain. In a murine knockin model, mutation resulting in inability to phosphorylate Y293 (Y293F) mimicked many features of complete WASp-deficiency. Although a phosphomimicking mutant Y293E conferred enhanced actin-polymerization, the cellular phenotype was similar due to functional dysregulation. Furthermore, steady-state levels of Y293E-WASp were markedly reduced compared to wild-type WASp and Y293F-WASp, although partially recoverable by treatment of cells with proteasome inhibitors. Consequently, tyrosine phosphorylation plays a critical role in normal activation of WASp in vivo, and is indispensible for multiple tasks including proliferation, phagocytosis, chemotaxis, and assembly of adhesion structures. Furthermore, it may target WASp for proteasome-mediated degradation, thereby providing a default mechanism for self-limiting stimulation of the Arp2/3 complex.


Assuntos
Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Hematopoese , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Fagocitose , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tirosina/química , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/genética
12.
J Exp Med ; 204(9): 2213-24, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17724125

RESUMO

Specific mutations in the human gene encoding the Wiskott-Aldrich syndrome protein (WASp) that compromise normal auto-inhibition of WASp result in unregulated activation of the actin-related protein 2/3 complex and increased actin polymerizing activity. These activating mutations are associated with an X-linked form of neutropenia with an intrinsic failure of myelopoiesis and an increase in the incidence of cytogenetic abnormalities. To study the underlying mechanisms, active mutant WASp(I294T) was expressed by gene transfer. This caused enhanced and delocalized actin polymerization throughout the cell, decreased proliferation, and increased apoptosis. Cells became binucleated, suggesting a failure of cytokinesis, and micronuclei were formed, indicative of genomic instability. Live cell imaging demonstrated a delay in mitosis from prometaphase to anaphase and confirmed that multinucleation was a result of aborted cytokinesis. During mitosis, filamentous actin was abnormally localized around the spindle and chromosomes throughout their alignment and separation, and it accumulated within the cleavage furrow around the spindle midzone. These findings reveal a novel mechanism for inhibition of myelopoiesis through defective mitosis and cytokinesis due to hyperactivation and mislocalization of actin polymerization.


Assuntos
Actinas/metabolismo , Citocinese , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Mitose , Neutropenia/metabolismo , Neutropenia/patologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Aberrações Cromossômicas , Cromossomos Humanos , Citocinese/efeitos dos fármacos , DNA , Depsipeptídeos/farmacologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Mitose/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Poliploidia , Proteínas Recombinantes de Fusão/metabolismo , Transgenes
13.
J Immunol ; 176(2): 957-65, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16393981

RESUMO

Mcl-1 is an antiapoptotic member of the Bcl-2 family of proteins that plays a central role in cell survival of neutrophils and other cells. The protein is unusual among family members in that it has a very short half-life of 2-3 h. In this report, we show that sodium salicylate (at 10 mM) greatly enhances the rate at which neutrophils undergo apoptosis and, in parallel, greatly accelerates the turnover rate of Mcl-1, decreasing its half-life to only 90 min. Whereas constitutive and GM-CSF-modified Mcl-1 turnover is regulated by the proteasome, the accelerated sodium salicylate-induced Mcl-1 turnover is mediated largely via caspases. Sodium salicylate resulted in rapid activation of caspase-3, -8, -9, and -10, and salicylate-accelerated Mcl-1 turnover was partly blocked by caspase inhibitors. Sodium salicylate also induced dramatic changes in the activities of members of the MAPK family implicated in Mcl-1 turnover and apoptosis. For example, sodium salicylate blocked GM-CSF-stimulated Erk and Akt activation, but resulted in rapid and sustained activation of p38-MAPK, an event mimicked by okadaic acid that also accelerates Mcl-1 turnover and neutrophil apoptosis. These data thus shed important new insights into the dynamic and highly regulated control of neutrophil apoptosis that is effected by modification in the rate of Mcl-1 turnover.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Proteínas de Neoplasias/metabolismo , Neutrófilos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Salicilato de Sódio/farmacologia , Apoptose/fisiologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Técnicas In Vitro , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/genética , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cancer Res ; 65(20): 9245-52, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16230385

RESUMO

The t[(11;19)(p22;q23)] translocation, which gives rise to the MLL-ENL fusion protein, is commonly found in infant acute leukemias of both the myeloid and lymphoid lineage. To investigate the molecular mechanism of immortalization by MLL-ENL we established a Tet-regulatable system of MLL-ENL expression in primary hematopoietic progenitor cells. Immortalized myeloid cell lines were generated, which are dependent on continued MLL-ENL expression for their survival and proliferation. These cells either terminally differentiate or die when MLL-ENL expression is turned off with doxycycline. The expression profile of all 39 murine Hox genes was analyzed in these cells by real-time quantitative PCR. This analysis showed that loss of MLL-ENL was accompanied by a reduction in the expression of multiple Hoxa genes. By comparing these changes with Hox gene expression in cells induced to differentiate with granulocyte colony-stimulating factor, we show for the first time that reduced Hox gene expression is specific to loss of MLL-ENL and is not a consequence of differentiation. Our data also suggest that the Hox cofactor Meis-2 can substitute for Meis-1 function. Thus, MLL-ENL is required to initiate and maintain immortalization of myeloid progenitors and may contribute to leukemogenesis by aberrantly sustaining the expression of a "Hox code" consisting of Hoxa4 to Hoxa11.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/genética , Proteína de Leucina Linfoide-Mieloide/biossíntese , Proteínas de Fusão Oncogênica/biossíntese , Animais , Linhagem Celular Transformada , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Retroviridae/genética , Fatores de Transcrição
16.
J Immunol ; 170(4): 1964-72, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12574365

RESUMO

It is commonly assumed that human neutrophils possess few, if any, functional mitochondria and that they do not depend on these organelles for cell function. We have used the fluorescent mitochondrial indicators, JC-1, MitoTracker Red, and dihydrorhodamine 123 to show that live neutrophils possess a complex mitochondrial network that extends through the cytoplasm. The membrane potential of these mitochondria was rapidly (within 2 min) disrupted by the addition of FCCP (IC(50) = 20 nM), but not by the Fo-ATPase inhibitor, oligomycin (at up to 7 microg/ml). However, inhibition of mitochondrial function with both agents resulted in cell shape changes. Neither activation of the respiratory burst nor phagocytosis of either latex particles or serum-opsonized Staphylococcus aureus was affected by the addition of FCCP or oligomycin. However, FCCP inhibited chemotaxis at concentrations that paralleled disruption of mitochondrial membrane potential. Furthermore, prolonged (2-h) incubation with oligomycin resulted in an impaired ability to activate a respiratory burst and also inhibited chemotaxis. These observations indicate that intact mitochondrial function is required to sustain some neutrophil functions, but not for the rapid initiation of the respiratory burst or phagocytosis. Loss of mitochondrial membrane potential was a very early marker for commitment of neutrophils into apoptosis and preceded the appearance of phosphatidylserine on the cell surface. However, inhibition of mitochondrial function did not accelerate the rate of neutrophil apoptosis. These data shed important insights into the hitherto unrecognized importance of mitochondria in the function of neutrophils during infection and inflammation.


Assuntos
Apoptose/fisiologia , Quimiotaxia de Leucócito/fisiologia , Mitocôndrias/fisiologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/fisiologia , Fagocitose/fisiologia , Explosão Respiratória/fisiologia , Apoptose/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Corantes Fluorescentes/análise , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oligomicinas/farmacologia , Explosão Respiratória/efeitos dos fármacos , Rodaminas/antagonistas & inibidores , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...